Все права на текст принадлежат автору: А А Фрейман.
Это короткий фрагмент для ознакомления с книгой.
Краткий курс пиротехникиА А Фрейман

Инж. А.А. ФРЕЙМАН


КРАТКИЙ КУРСПИРОТЕХНИКИ


ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО

ОБОРОННОЙ ПРОМЫШЛЕННОСТИ

______________________________________

Москва – 1940


В книге кратко изложена теория пиротехники, описаны пиротехнические составы, сырье и вспомогательные материалы, а также приведены основные сведения об устройстве, действии и технологии пиротехнических средств.

В издаваемой книге собраны и систематизированы все основные материалы по пиротехнике, что дает возможность использовать ее в качестве учебного пособия для слушателей техникумов и сети рабочего образования.


Редактор Е.Н.Сильвановская Тех.редактор И.М. Зудакин

Сдано в набор 14/11-1940 г. Подписано к печати 19/VII-1940 г. Тираж 10000.

Печ.листов 9 ½. Формат бумаги 60*92 1/18. №А30718. Учетн.авт.л. 10,7. Учетн. № 617. Зак. № 49

Типография Оборонгиза, Киев, Крещатик, 42.


ГЛАВА 1


ВВЕДЕНИЕ


§ 1. ОСНОВНЫЕ ПОНЯТИЯ


Пиротехника - специальная отрасль техники, к области которой относятся производство и изучение различных веществ и смесей веществ, образующих при сгорании цветной или яркий белый огонь, дым или дающих звуковые эффекты и зажигательное действие.

Слово «пиротехника» происходит от греческих слов «пир» (огонь) и «техне» (искусство, ремесло) и означает уменье изготовлять горючие изделия.

Эта отрасль техники получила быстрое развитие сравнительно недавно. Бурное развитие военной промышленности во всех странах в начале 20 века вызвало и быстрое развитие пиротехники.

Пиротехнические изделия делятся на две основные группы: 1) изделия военной пиротехники; 2) изделия мирной пиротехники.

Военная пиротехника занимается изучением и изготовлением осветительных, зажигательных, сигнальных, трассирующих и имитационных средств. Мирная пиротехника занимается изучением и изготовление средств для фейерверков.


§ 2. КРАТКИЕ ИСТОРИЧЕСКИЕ СВЕДЕНИЯ


Огнем как средством защиты и нападения люди пользовались еще в глубокой древности. Огневые средства в военных целях применялись задолго до нашей эры. Впервые их использовали китайцы, войска которых были снабжены «огненными повозками». Эти повозки представляли собой метательные машины, которые выбрасывали горшки с горящим зажигательным составом и горящие шары.

Огонь служил также и для целей сигнализации. Дикари пользовались кострами для передачи сообщений на большие расстояния, древние персы создали систему сигнализации при помощи факелов; эта система положила начало развитию современных методов оптической сигнализации, которая применяется и до настоящего времени.

Более подробные сведения о древней пиротехнике можно найти в описаниях Энея, жившего за 360 лет до нашей эры. Он описывает зажигательный состав из смолы, серы, ладана, пакли и стружек, который подожженным в горшках выбрасывали на войска неприятеля.


      В литературе, относящейся к концу IV в. нашей эры, встречаются описания зажигательных стрел с оболочками, наполненными горючими веществами (смолой, серой, паклей, нефтью). Нефть как горючее и зажигательное средство применяли еще во времена Александра Македонского.

Начиная приблизительно с VII в. появляются сообщения о «греческом» и «морском» огне.

Греки готовили составы для этого огня из смеси различных легковоспламеняющихся веществ. Рецепты таких составов хранились в глубокой тайне, - они обеспечивали византийцам победы над врагами. В эти составы входили вера, винный камень, клей, смола, нефть и другие горючие вещества. Иногда в эти составы входили негашеная известь, вызывающая самовоспламенение состава при соприкосновении его с водой. Составы с негашеной известью обычно имели удельный вес меньше единицы и могли держаться на воде. Самовоспламенение этих составов при соприкосновении с водой объясняется тем, что под действием тепла, выделяющегося при гашении извести, воспламеняются легко горючие компоненты состава, в частности, легкие углеводороды, находящиеся в сырой нефти.

«Морской» огонь состоял из перемешанных в спирте порошкообразной серы, винного камня, поваренной соли. Горящим «морском» огнем обливали корабли противника с помощью «сифонов».

Твердые горящие составы в глиняных сосудах выбрасывались на противника метательными машинами.

Однако, метание зажигательных составов на большие расстояния было затруднительно. Позднее для этой цели использовали животных и птиц. К ним привязывали сосуды с зажигательными составами, составы поджигали и животных или птиц направляли во враждебные укрепления. Но использование животных и птиц было небезопасно: они могли занести пламя и в войска или строения той стороны, которая их использовала для нанесения ущерба противнику. Например, в 1422 г. лекарь Гуситов сгорел от своих птиц с горящими сосудами, пущенных во враждебный стан.

Для поджогов на территории противника применяли также зажигательные движущиеся пиротехнические изделия (типа ракеты), снаряженные зажигательным составом

Однако горение известных в то время зажигательных средств на воздухе не давало достаточного эффекта: пламя можно было сравнительно легко порушить. Применение веществ, содержащих кислород, например селитры, значительно увеличило возможности пиротехники. По литературным данным, селитра из Китая была завезена приблизительно в XIII в. в магометанские страны. Ко второй половине XIII в. относятся сообщения о появлении нового состава из серы, селитры и угля, т.е. черного пороха, который, очевидно, вначале использовался как зажигательное средство. В XIV в. в Германии появились первые орудия, основанные на баллистическом применении черного пороха.

Развитие пиротехнических средств шло по пути подбора составов и регулирования их действия на основе, главным образом,


опытных данных. Появились такие средства воспламенения, как фитили, стопин и др.; зажигательные средства выбрасывались с помощью пороха. Позднее применялись специальные ракеты (зажигательные, системы Конгрэва) и другие изделия боевой пиротехники.

Развитие пиротехники шло и по линии фейерверков. Индусы издавна устраивали фейерверки в дни религиозных праздников. Первый в Европе фейерверк был сожжен в Италии в конце XIV в. В XV- XVI I вв. фейерверки применяли в европейских странах в качестве народного увеселения. Они имели большой успех. В те времена для фейерверков употребляли селитро-серные составы, которые давали очень слабо окрашенные огни. Только в XIX в., после открытия хлорновато-калиевой соли, стали появляться яркие фейерверочные огни различных цветов. Во второй половине XIX в. для фейерверков начали применять магний.

В России устройство фейерверков началось с XVIII в.


§3. СОВРЕМЕННОЕ СОСТОЯНИЕ ПИРОТЕХНИКИ


К началу империалистической войны 1914 г. на вооружении уже было немало различных пиротехнических изделий. Например, в Германии в 1918 г. было выработано около 6 млн. осветительных и сигнальных патронов 4-го калибра. Во время войны выявилось большое значение различных средств военной пиротехники. По силе морального воздействия на людей и по своему разрушительному действию зажигательные средства представляют собой очень мощное и грозное оружие.

С развитием авиации большое значение приобрели зажигательные авиабомбы, которые позволяют устраивать пожары в тылу противника. В 1917 – 1918 гг. город Реймс был бомбардирован зажигательными бомбами; от них Реймс пострадал больше, чем за время войны. Зажигательные средства вызывают массовые пожары в крупных городах.

Ведение современного боя в ночное время вызывает необходимость в различных осветительных средствах; из них наиболее важны осветительные снаряды. Имеются специальные пиротехнические осветительные составы, дающие настолько мощные источники света, что при них возможно производить ночью фотосъемку.

Трассирующие средства, оставляющие на траектории своего полета видимый след, огненный или дымовой, имеют также большое применение в современной войне. Развитие боевой авиации и автоброневых и боевых мотомеханизированных средств вызывает необходимость в специальных средствах для пристрелки по движущимся целям.

Пиротехнические средства связи (сигнальные) незаменимы в боевых условиях для передачи условных сообщений на расстояние.

Пиротехника имеет очень большое значение и для научно-исследовательских работ. При изучении стратосферы используются дымовые шашки, поднимаемые на специальных шарах-зондах; на


определенной секунде времени подъема догорает замедлитель дымовой шашки, и она образует облако дыма. Наблюдения за этим облаком дают ценные научные данные о многих явлениях в стратосфере. Пиротехнические сигнальные средства используются с большим успехом в дальнейших арктических экспедициях.

Во время учебных маневров армии и при войсковом обучении большую роль играют пиротехнические имитационные средства, которые употребляются взамен боевых; например, взрывы шрапнельных и фугасных снарядов имитируются так называемыми взрывпакетами.

Современное пиротехническое производство основывается теперь не только на опытных данных о приготовлении составов и конструкции изделий. Современная пиротехника основывается на всех достижениях химических, физических и специальных военных наук. Основное внимание современных пиротехников направлено на изучение физико-химических процессов, происходящих при действии составов, свойств компонентов, на научно обоснованный выбор новых зажигательных средств и конструкции пиротехнических изделий.


§ 4. КЛАССИФИКАЦИЯ ПИРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ


все пиротехнические изделия, как было сказано, можно разделить по характеру их применения на две основные группы: изделия военной пиротехники и изделия мирной пиротехники.

Изделия военной пиротехники можно отнести к следующим подгруппам: 1) осветительные; 2) сигнальные: а) ночного действия, б) дневного действия; 3) зажигательные; 4) трассирующие; 5) имптационные.       В каждую из перечисленных групп входят различные изделия.


ГЛАВА II


ОСНОВЫ ТЕОРИИ ПИРОТЕХНИКИ


§ 1. ОБЩИЕ СВЕДЕНИЯ О ПИРОТЕХНИЧЕСКИХ СОСТАВАХ И ИХ КОМПОНЕНТАХ


Пиротехнический эффект достигается в результате химической реакции горения. Горение представляет собой реакцию соединения горючего вещества с кислородом. При этой реакции обычно происходит значительное повышение температуры и образование пламени или выделение дыма.

Горючие вещества отличаются друг от друга способностью с той или иной активностью соединяться с кислородом; от их активности зависят сила света пламени и количество выделяемого тепла. Количество газообразных и твердых продуктов, получающихся в результате реакции, зависит от свойств реагирующих веществ. Для горения необходим кислород. Следовательно, для получения требуемого эффекта пиротехнические изделия следует сжигать на открытом воздухе или вводить в смесь с горючим вещество, богатое кислородом и способное легко его отдавать. Кислорода воздуха обычно бывает недостаточно для получения требуемого эффекта, поэтому в составы для пиротехнических изделий вводят вещества, богатые кислородом – окислители.

В качестве горючих веществ применяются некоторые металлы, сернистые соединения, органические соединения и др. В качестве окислителей применяются соли хлорноватой, азотной и других кислот, некоторые окислы металлов и пр. При взаимодействии горючего и окислителя, применяя различные компоненты, т.е. составленные части смеси, и меняя их количественные соотношения, можно изменять течение реакции в соответствии с теми требованиями, которые предъявляются к изделию.

Смесь из окислителя и горючего называется о с н о в н о й д в о й н о й с м е с ь ю. Для получения различных по действию составов к основной смеси добавляются различные компоненты или смешиваются различные основные смеси.

Таким образом можно получить очень много разнообразных по свойствам смесей, или так называемых п и р о т е х н и ч е с к и х с о с т а в о в.


§ 2. РЕАКЦИИ ГОРЕНИЯ


Для начала горения необходимо нагреть часть горючего вещества, а затем выделяющееся в процессе горения тепло будет поддерживать температуру, необходимую для продолжения горения. Реакции горения сопровождаются, как было сказано, выделением тепловой и световой энергии. Пиротехника использует реакции горения специальных составов для получения тепловых и световых эффектов.

Если при реакции горения пиротехнических составов получаются горящие и накаленные от горения пары и газы или происходит свечение накаленных твердых или жидких частиц, то такие пиротехнические составы дают пламенное горение.

Для пиротехники наиболее интересны реакции соединения и реакции обмена, особенно экзотермических реакции, в которых участвуют твердые вещества. Если реакция происходит в смеси веществ без участия воздуха, она называется реакцией внутреннего горения. Действие пиротехнических составов в большинстве случаев основывается именно на внутренней реакции обмена кислородом между окислителем и горючим, находящимися в порошкообразной смеси. Применяя окислители в качестве основных компонентов реакции горения, необходимо учитывать следующие их характеристики, влияющие на горение: а) температуру разложения окислителя; б) теплоту образования; в) стойкость по отношению к воздействию атмосферы.

Применяя горючие вещества в качестве основных компонентов, следует учитывать: а) температуру их воспламенения; б) тепловой эффект соединения с кислородом; в) стойкость.

Реакция горения характеризуется: а) скоростью горения; б) тепловым эффектом реакции; в) агрегатным состояние и свойствами продуктов реакции; г) величиной начального импульса, требуемого для возникновения реакции горения.


§ 3. СОСТАВЛЕНИЕ ОСНОВНЫХ ПИРОТЕХНИЧЕСКИХ СМЕСЕЙ


Основа каждого пиротехнического состава – смесь из окислителя и горючего – обладает способностью сгорать за счет кислорода, выделяемого при разложении окислителя. Активность такой смеси объясняется химическим взаимодействием между окислителем и горючим. Поэтому для определения количественных соотношений между компонентами смеси нужно знать ход химической реакции между ними.

Для составления уравнения реакции горения нужно: 1) написать реакцию разложения окислителя; 2) написать реакцию горения взятого горючего в чистом кислороде; 3) уравнять коэффициенты у атомов кислорода; 4) сложить написанные уравнения.

Пример 1. Нужно составить двойную основную смесь из азотнокислого бария и крахмала

Ba(NO3)2 + C6H10O5.


Во-первых, напишем реакцию разложения окислителя, т.е. азотнокислого бария:

Ba(NO3)2 BaO + N2 + 5 O2. (1)


Реакция окисления крахмала в чистом кислороде до сгорания крахмала в СО (неполное сгорание) будет иметь вид:

C6H10O5 +6 O 6 CO2 +3 H2O (2)

Для уравнения коэффициентов у кислорода нужно увеличить в 6 раз коэффициенты уравнения (1) и в 5 раз коэффициенты уравнения (2). Получим:

6 Ba(NO3)2 6 BaO + 6 N2 + 30 O; (1)

5 C6H10O5 + 80 O 30 CO + 25 H2O. (2)

сложив оба уравнения по частям и сократив кислород, получим общее уравнение реакции:

6 Ba(NO3)2 + 5 C6H10O5 6 BaO + 6 N2 + 30 CO + 25 H2O.

Исходя из этого уравнения, можно подсчитать рецепт смеси. Беря эти вещества в количествах, соответствующих граммолекулам, получим:

6 * 261 = 1566 г.

где 261 – молекулярный вес Ba(NO3)2 ;

для C6H10O5

5 * 162 = 810 г.

где 162 – молекулярный вес крахмала.

Всего смеси 2376 г.

Или, переводя в проценты:

Для Ba(NO3)2


      для C6H10O5


(точность подсчета до целых чисел).

Как видно из этого примера, при разложении окислителя – азотнокислого бария Ba(NO3)2 – выделяется кислород; 1 молекула его содержит 6 атомов кислорода, а в свободном виде выделяется лишь 5 атомов; 1 атом кислорода остается в соединении с барием в виде окиси бария BaO и окисляющего действия не обнаруживает.

Так же, как нитрат бария, действуют и другие соли азотной кислоты, давая при своем разложении свободный кислород и окислы металлов. Кроме нитратов другие окислители также не всегда выделяют весь свой запас кислорода в свободное состояние. Но существуют окислители, выделяющие весь свой кислород в виде свободного, например, бертолетова соль, или хлорат калия KCIO3 , который разлагается по схеме:

KCIO3 KCI + 3 О.

Кислород, выделяющийся в свободном состоянии при разложении вещества, называется активным, а все количество кислорода, содержащееся в веществе, называется общим с о д е р ж а н и е м к и с л о р о д а.

Пример 2. Составить двойную смесь из хлората калия (окислитель) и сахара (горючее):

KCIO3 + C12H22O11.

Аналогично предыдущему примеру реакция разложения хлората калия:

KCIO3 KCI + 3 О. (1)


Реакция полного сгорания сахара в кислороде до образования СО2:

C12H22O11 + 24 О 12 СО2 + 11 Н2О. (2)

Для уравнения коэффициентов кислорода умножаем уравнение (1) на 8. Получим;

8 KCIO3 8 KCI + 24 О.

Складываем уравнения (1) и (2):

8 KCIO3 8 KCI + 24 О

+ C12H22O11 + 24 О 12 СО2 + 11 Н2О

____________________________________

8 KCIO3 + C12H22O11 12 СО2 + 11 Н2О + 8 KCI

взяв граммолекулярные соотношения веществ, получим:

для хлората калия 8*122,56=980,5 г., где 122,56 – молекулярный вес KCIO3; для сахара 342 г., где 342 – молекулярный вес сахара. Итого смеси 1322,5 г.

Переводя в проценты, получим:

для хлората калия


для сахара


Кроме основных смесей из двух компонентов (двойных) могут применяться тройные смеси. Они состоят из двух двойных смесей, имеющих одинаковые окислители, но разные горючие, т.е. состоят из трех веществ: одного окислителя и двух горючих. Тройные смеси могут состоять также из двух различных окислителей и одного горючего.

Мы разобрали в первом примере случай составления пиротехнической смеси, в которой активного кислорода окислителя не хватает для полного сгорания углерода, содержащегося в горючем. Углерод в этом случае сгорает только до образования СО.

      Пиротехнические смеси, в которых кислорода, получаемого при разложении окислителя, не хватает для полного сгорания горючего, имеют так называемый о т р и ц а т е л ь н ы й к и с л о р о д н ы й б а л а н с. Смеси с избытком активного кислорода обладают п о л о ж и т е л ь н ы м к и с л о р о д н ы м б а л а н с о м.


§ 4.       ОБРАЗОВАНИЕ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ


На базе основной двойной смеси из окислителя и горючего строится более сложный пиротехнический состав.

В зависимости от требований, предъявляемых к составу, к основной смеси примешиваются различные компоненты. Например, для получения пламени, окрашенного в определенный цвет, в состав вводится соль соответствующего металла: для получения зеленого цвета – соли бария, красного – соли стронция, желтого – соли натрия.


      Для придания составу механической прочности добавляются особые вещества, обладающие способностью склеивать (или связывать) состав при уплотнении или прессовании его. Такие вещества называются цементаторами, или с в я з ы в а ю щ и м и в е щ е с т в а м и. Обычно они одновременно являются и горючими; это – готовые лаки, олифа, смолы (с добавлением в составы растворителей) и др .

Иногда для уменьшения активности состава или уменьшения чувствительности отдельных компонентов к механическим и тепловым импульсам к составам прибавляют вещества, способные замедлять процессы горения; такие вещества называются ф л е г м а т и з а т о р а м и. К их числу относятся парафин, канифоль, некоторые масла и др.

Разберем пример составления сигнального состава, дающего пламя красного цвета. Для окрашивания пламени возьмем в состав 20% (от всего состава) углекислого стронция SrCO3. В качестве окислителя возьмем хлорат калия KCIO3; в качестве горючего – шеллак С16Н24О5, который одновременно служит цементатором.

При температуре разложения углекислый стронций разлагается по уравнению:

SrCO3 SrO + CO2.

Продукты разложения

SrCO

3

вполне окислены и поэтому не нуждаются в окислителе. Следовательно, окислитель требуется только для того, чтобы дать кислород на сгорание шеллака (горючего), т.е. имеется двойная смесь из хлората калия и шеллака:

KCIO3 + C16H24O5.

Напишем уравнение разложения хлората калия:

KCIO3 KCI + 3 О. (1)

Напишем уравнение горения шеллака в кислороде до полного сгорания в углекислый газ:

C16H24O5 + 39 О 16СО2 + 12 Н2О (2)

Уравняем коэффициенты кислорода в уравнениях (1) и (2), для чего умножим уравнение (1) на 13. получим:

13 KCIO3 13 KCI + 39 О.

      Сложив полученное уравнение с уравнением (2), получим:

C16H24O5 + 13 KCIO3 13 KCI + 16СО2 + 12 Н2О

Из этого уравнения найдем количества C16H24O5 и KCIO3 в двойной смеси.

1 граммолекула C16H24O5 составляет 296,2 г.; 13 граммолекул KCIO3 составляют 13*122,56 г. = 1593,8 г. Всего смеси 1890 г.

Переводя в проценты, получим:

для хлората калия



для шеллака


Но в состав входит 20% углекислого стронция и только 80% рассчитанной нами двойной смеси. Следовательно, каждого компонента двойной смеси тоже будет по 80% от полученных нами величин, а именно: хлората калия 84,3*0,8=67,44%; шеллака 15,7*0,8=12,56%.

Общий рецепт будет таким (проц.):


SrCO3 ……………………… 20

KCIO3 ……………………. 67,44

C16H24O5……………………. 12,56


§ 5. НАЧАЛЬНЫЙ ИМПУЛЬС И ВОСПЛАМЕНЕНИЕ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ


Для воспламенения пиротехнического состава необходимо затратить какое-то количество энергии, которое обычно называется н а ч а л ь н ы м и м п у л ь с о м. Во многих случаях от характера начального импульса зависит характер реакции сгорания пиротехнического состава.

      В качестве начального импульса могут быть использованы: механическая энергия (удар, трение), лучистая (ультрафиолетовые лучи, свет), тепловая, химическая энергия.

Часто действие различных видов энергии сводится к воздействию тепловой энергии, например, при ударе и трении развивается повышенная температура; то же происходит и при воздействии крепкой серной кислоты на состав: при химической реакции между кислотой и отдельными компонентами состава тоже выделяется тепло.

Иногда один и тот же состав при воспламенении его от искры сгорает сравнительно медленно, а при более мощном начальном импульсе реакция протекает со взрывом.

Каждый состав или основная смесь воспламеняются при определенной температуре. Эта температура – очень важная характеристика состава; знание ее позволяет установить безопасный режим работы при производстве и применении данного состава.

Рис. 1. Прибор для определения температуры самовоспламенения.

1- железная баня;

2- испытуемый состав;

3- сплав Вуда;

4- электронагрев;

5- латунный футляр;

6- 6- термометр.


      Температура, при которой начинается горение состава под действием пламени, называется т е м п е р а т у р о й в о с п л а м е н е н и я .

Но, иногда, состав, подвергающийся нагреву, может самовоспламениться без воздействия огня. Температура, при которой в определенных условиях нагрева состав самовозгорается. Называется т е м п е р а т у р о й с а м о в о с п л а - м е н е н и я. Эта температура для каждого состава определяется следующим опытом (рис. 1).

В металлическую пробирку 2 помещают 0,5 г состава. В железной бане 1 расплавляется сплав Вуда. Когда температура в бане достигнет 100 градусов , в сплав Вуда погружают пробирку с составом приблизительно на 0,3 ее длины. Далее баню нагревают с такой интенсивностью, чтобы температура ее повышалась на 20 градусов в минуту, и отмечают температуру в момент самовоспламенения состава.

При испытании различных составов установлено, что некоторые осветительные составы самовоспламеняются при температуре около 330 градусов, цветные хлоратные составы – около 215-225 градусов. Хлорат сильно понижает температуру самовоспламенения состава.


§ 6. ЧУВСТВИТЕЛЬНОСТЬ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ


Чувствительность пиротехнических составов к действию начального импульса – к огню, и удару и к трению – зависит от химических свойств компонентов, от степени их измельчения, от плотности состава и от примесей к компонентам. Характеристика чувствительности составов чрезвычайно важна как с точки зрения применения их в различных изделиях, так и для разработки безопасного режима производства и обработки в заводских условиях.

Чувствительность состава определяется экспериментально.

Увеличение степени измельчения компонентов увеличивает чувствительность состава. Это явление можно объяснить тем, что увеличивается поверхность реагирующих компонентов, а это облегчает условия возбуждения реакции горения.

С увеличением плотности чувствительность состава уменьшается. При большой плотности энергия, сообщаемая начальным импульсом, распределяется на относительно большую массу, и эффективность воздействия на отдельные части состава несколько снижается.

Примеси в основных компонентах влияют на чувствительность состава двояко. Некоторые примеси увеличивают ее, другие уменьшают. Твердые примеси с острыми краями (песок, осколки стекла, твердые металлические стружки и т.п.) увеличивают чувствительность состава к трению. Другие примеси, способные обволакивать частицы компонентов, входящих в состав, наоборот, уменьшают его чувствительность. Так действуют парафин, олифа, касторовое масло, канифольный лак и некоторые другие вещества, называемые ф л е г м а т и з а т о р а м и.

Некоторые инертные примеси, например кизельгур, понижают чувствительность состава, воспринимая часть энергии, сообщаемой составу каким-либо начальным импульсом.


      Ч у в с т в и т е л ь н о с т ь с о с т а в о в к д е й с т в и ю о г н я, т. е. в о с п л а м е н я е м о с т ь, определяется действием луча огня от горящего бикфордова шнура или от газовой горелки. Бикфордов шнур состоит из хлопчатобумажной оплетки с запрессованным внутри пороховым столбиком.

Для испытания бикфордовым шнуром небольшую навеску состава (о,1 –0,2 г) помещают на дно пробирки, неплотно закрытой пробкой; в пробирку вставляют отрезок бикфордова шнура. Наибольшее расстояние между концом шнура и поверхностью состава, при котором последний воспламеняется, может служить мерой чувствительности состава. Хлораты повышают чувствительность составов к огню.

Чувствительность составов к огню газовой горелки определяется на специальном маятниковом приборе (рис. 2).

Небольшое количество испытуемого состава насыпается в железную чашечку b вровень с ее краями. Чашечка находится на нижнем конце маятника, который, качаясь, проходит через пламя бунзеновской горелки a. При этом по шкале отмечается либо начальное положение маятника (т.е. угол его отклонения), при котором первое качание его даст воспламенение состава, либо то количество качаний при данном угле отклонений, которое потребуется для воспламенения состава.

Данные испытаний пиротехнических составов на чувствительность к воспламенению, приводимые в статье Ленце и др. (перевод в сбор-


нике «Пиротехния» № 1), показывают, что результаты, получаемые двумя описанными выше способами, соответствуют друг другу. Хлоратные составы сравнительно легко воспламеняются при обоих испытаниях. Составы, содержащие в качестве окислителя нитраты, воспламеняются труднее. Сравнительно легко воспламеняются составы, содержащие пороховую мякоть.

Чувствительность пиротехнических составов к удару определяется на приборе, называемым копром. Он устроен следующим образом (рис. 3). Между двумя неподвижными рельсами 1 свободно скользит стальной груз 2 (вес его можно брать 2,5 или 100 кг). Груз в верхней части заканчивается головкой, зажимаемой между стальными лапками выключателя. Специальным приспособлением выключатель с грузом можно перемещать на различную высоту, измеряемую по шкале. Под рельсами на прочном фундаменте помещается стальная наковальня 3, на которой установлен штемпельный приборчик Каста (рис. 4).

      Приборчик Каста состоит из стальной наковальни 1 с основанием, стального бойка 2 с головкой и стальной направляющей муфты 3. ударные поверхности бойка и наковальни обычно хорошо пришлифовываются.

Небольшая навеска состава помещается между ударными поверхностями наковальни и бойка. Груз ударяет по головке бойка; чтобы отскочивший при ударе груз не упал вторично, его удерживает специальное приспособление.

В зависимости от чувствительности состава, веса груза и высоты его падения состав при ударе может воспламениться или дать отказ. Иногда за меру чувствительности принимается процент воспламенений (или взрывов) состав при 20 или более испытаниях ударом одного и того же груза с той же высоты. Можно также принимать за меру чувствительности величину работы удара груза, вызывающего воспламенение. При опытах установлено, что наибольшей чувствительностью обладают составы с хлоратом бария.

Ч у в с т в и т е л ь н о с т ь п и р о т е х н и ч е с к и х с о с т а в о в к т р е н и ю обычно определяется простым растиранием маленькой навески состава в фарфоровой ступке. Вспышки при этом доказывают, что состав чувствителен к трению. Этот способ прост, но недостаточно точен и объективен. Между тем большинство составов в производственных процессах подвергаются трению, и очень важно найти более точный способ определения чувствительности составов к трению.


§ 7. СКОРОСТЬ ГОРЕНИЯ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ


Под скоростью горения обычно понимают время в секундах, в течение которого горение распространяется на 1 см длины изделия из определенного состава. Различные пиротехнические составы горят с разной скоростью; она зависит от многих причин. Если рассмотреть с к о р о с т ь г о р е н и я о с н о в н о й д в о й н о й с м е с и, можно установить зависимость этой скорости от следующих основных факторов: а) от свойств окислителя и горючего; б) от величины зерен каждого компонента, в) от плотности смеси.

а) С в о й с т в а к о м п о н е н т о в – важнейший фактор, влияющий на скорость горения. Например, хлораты со всеми горючими дают смеси, горящие значительно быстрее, чем нитраты с теми же горючими.

К быстро горящим смесям можно отнести:

KCIO3 + S,

KCIO3 + C,

KCIO3 + сахар,

KCIO3 + шеллак,

Ba(CIO3)2 + S,

KNO3 + C.

К медленно горящим смесям относятся:

KCIO3 + канифоль,

Ba(CIO3)2 + канифоль,

Ba(NO3)2 + шеллак,

Sr(NO3)2 + идитол.

б) С т е п е н ь и з м е л ь ч е н и я к о м п о н е н т о в, или величина их зерен, влияет на скорость горения смеси следующим образом: чем мельче зерна компонентов, тем больше скорость горения. Большая степень измельчения увеличивает поверхность горения и ускоряет процесс.

в) У в е л и ч е н и е п л о т н о с т и с м е с и обычно уменьшает скорость ее горения, затрудняя распространение реакции горения внутрь состава. Однако для многих смесей существует некоторый предел плотности, после которого увеличение ее уже не изменяет скорости горения.

При прибавлении к основной двойной смеси различных компонентов для образования состава скорость горения его изменяется. Это изменение зависит от всех разобранных выше факторов, от свойств добавок и характера взаимодействия между компонентами


состава. Поэтому изучение скорости горения многокомпонентных составов значительно сложнее, чем изучение горения основных двойных смесей. ...


Все права на текст принадлежат автору: А А Фрейман.
Это короткий фрагмент для ознакомления с книгой.

Краткий курс пиротехникиА А Фрейман