Все права на текст принадлежат автору: Дэвид Фредерик Эттенборо.
Это короткий фрагмент для ознакомления с книгой.
Жизнь на Земле. Естественная историяДэвид Фредерик Эттенборо

Дэвид Эттенборо ЖИЗНЬ НА ЗЕМЛЕ. ЕСТЕСТВЕННАЯ ИСТОРИЯ

Под редакцией и с предисловием Н. Н. Воронцова.

Предисловие Виды, биосфера и человек

Книга Дэвида Эттенборо посвящена разнообразию форм жизни на Земле и путям возникновения этого разнообразия в процессе исторического развития жизни на нашей планете, то есть в процессе биологической эволюции.

Удивительное разнообразие живого мира издревле увлекало и восхищало человека. Мореплаватели и купцы, путешественники и лекари, а затем и ученые привозили домой образцы удивительных растений и животных из всех знакомых им стран мира. Немалым был объем знаний о животном и растительном мире в древнейших цивилизациях Нила, Двуречья, Индии, Китая. Уже в античные времена древнегреческие естествоиспытатели и философы Аристотель и Теофраст попытались уложить в какую-то систему ту бездну фактов о животных (это сделал Аристотель) и о растениях (Теофраст), которые были известны древнему миру. Эпоха Великих географических открытий, идейно связанная с эпохой Возрождения, дала новый толчок к познанию разнообразия органического мира: появились первые ботанические сады, гербарии, кунсткамеры.

Понадобился терпеливый гений Карла Линнея, чтобы разработать принципы систематизации наших знаний о природе. После Линнея накопление ботанических и зоологических знаний шло более направленно, убыстряющимися темпами и продолжается по сей день. Но сколь ни велики были знания об удивительном разнообразии форм проявления жизни на Земле в додарвиновские времена, причины, порождающие это разнообразие, оставались невыявленными. Сумма знаний о разнообразии жизни на Земле еще не стала наукой в строгом смысле этого слова.

«Наука» и «знание» — понятия близкие, но не тождественные. Знания обеспечивают тот материальный багаж, без которого немыслимо развитие науки, а значит, и прогресс человечества. Но сумма знаний становится наукой лишь с появлением теории, удовлетворительно объясняющей течение процессов, обнаруженные факты в их сопоставлении и наблюдаемые явления.

Такой теорией, выдвинутой ровно 125 лет назад (1859 г.), стала теория Чарлза Дарвина. Дарвин отнюдь не был первым среди тех, кто говорил о разнообразии природы как о результате эволюции. Но он первый открыл один из движущих факторов эволюции — естественный отбор и положил начало изучению другого движущего фактора — изоляции.

После Дарвина нам стали понятнее причины поразительного разнообразия форм жизни на Земле. В дарвиновский период наука о причинах многообразия сравнялась с суммой знаний об этом разнообразии.

Но процесс познания этого разнообразия далек от завершения. И в наш век продолжаются выдающиеся открытия. Так, в 50-х гг. ленинградский зоолог (будущий академик) А. В. Иванов открыл новый тип животных — погонофор, что по своему значению равносильно открытию новой планеты Солнечной системы. А в начале 70-х гг. немецкий зоолог Грелль, заново исследовав полузабытое многоклеточное существо — трихоплакс, показал, что его нельзя отнести ни к одному из ранее известных типов животных, и выделил новый тип — пластинчатые. В 1973 г. тот же А. В. Иванов показал несомненную связь трихоплакса с возможными предками всех многоклеточных животных. Еще в 1879 г. И. И. Мечников, рассуждая о том, как должно было быть устроено самое примитивное многоклеточное животное, «придумал» гипотетического предка многоклеточных и назвал его фагоцителлой. Почти через сто лет Иванов «узнал» в трихоплаксе мечниковскую фагоцителлу! Но это все открытия, сделанные либо в глубинах океана (погонофоры), либо под микроскопом (трихоплакс). Большинство же читателей, в том числе и многие биологи, считают, что процесс открытия новых видов в основном завершен. Однако это далеко не так даже для современных млекопитающих.

В конце 30-х гг. в Казахстане был открыт грызун селевиния, который оказался не только новым видом и новым родом, но и относится к ранее не известному семейству. Боюсь, что история открытия окапи в джунглях Африки на рубеже XIX–XX вв. лучше известна читателям, чем история открытия селевинии. Только за годы советской власти открыто 9 (из 17) видов тушканчиков нашей фауны, причем три из них были описаны в последние 25 лет. За этот же период, когда зоологи начали интенсивно применять генетические методы исследования и изучать хромосомы, в фауне СССР были открыты новые виды мышей, полёвок, хомяков, ежей, землероек, доказана видовая самостоятельность таких крупных животных, как горные бараны, ранее считавшихся лишь географическими расами.

Что же тогда говорить о беспозвоночных животных? Мы даже приблизительно не в состоянии назвать число еще не описанных видов для многих групп насекомых, а число еще не открытых видов круглых червей, нематод, разные исследователи оценивают между 100 000 и 1 000 000 видов! Между тем известно, что многие нематоды повреждают культурные и важные для человека дикорастущие виды растений. Необходимо регулировать их численность, добиваться снижения их вреда, а мы еще не знаем этих видов…

Итак, Дарвин выявил причины разнообразия видов органического мира. Каждый из видов, населяющих нашу планету, есть результат многомиллионной эволюции, носитель неповторимых генетических особенностей, и мы обязаны сохранить и передать потомкам это удивительное многообразие. Оно не может не восхищать нас своей красотой и неповторимостью эволюционных путей, приведших к формированию каждого вида. Однако все, о чем мы сейчас говорим, было ясно еще на рубеже XIX–XX вв.

То принципиально новое, что внес текущий век в понимание проблемы органического многообразия, заключается в следующем: сохранение всего этого многообразия — непременное условие существования человека на Земле. Развитием этих идей мы в значительной степени обязаны нашим выдающимся соотечественникам: В. И. Вернадскому, В. Н. Сукачеву, Н. В. Тимофееву-Ресовскому и Г. Ф. Гаузе. Возникло учение о биосфере как особой оболочке нашей планеты, связанной с жизнью; появилось учение о взаимосвязях видов друг с другом в природных сообществах, или биогеоценозах; была поставлена проблема «биосфера и человечество».

Постепенно не только ученые, но и широкие массы неспециалистов начинают понимать, что удивительное разнообразие форм жизни на Земле — это не просто результат приспособления каждого вида к конкретным условиям среды, но и важнейший механизм обеспечения устойчивости всего биогеоценоза, всей биосферы, состоящей из множества биогеоценозов, иными словами, механизм обеспечения стабильности жизни на Земле.

Настало время взглянуть на проблему изучения органического многообразия, которой занята в общем-то немногочисленная группа зоологов, ботаников, палеонтологов, ведущих трудную кочевую жизнь в экспедициях и малопрестижную работу в музеях и гербариях, не только с познавательной, но и с узко утилитарной точки зрения.

Какова связь современного урбанизированного человека с живой природой? Речь идет не столько об эмоциональных связях, хотя их роль по мере роста городов с их напряженным ритмом жизни будет играть все большую роль, а о физических, утилитарных связях: что мы едим, что пьем, чем дышим, откуда берем энергию, во что одеваемся?

Выйдя из животного царства, Человек разумный по сей день остается одним из его членов, хотя и находящимся на особом положении. Царство животных, подцарство многоклеточных, раздел двустороннесимметричных, тип хордовых, подтип позвоночных, группа челюстноротых, класс млекопитающих, отряд приматов, подотряд обезьян, надсемейство человекообразных, семейство люди с единственным ныне живущим видом Homo sapiens — вот то скромное место, которое занимает человек на полке многомиллионной библиотеки видов живой природы.

Но живой мир не библиотека, в которой одна книга может сохраниться даже в том случае, если пожар уничтожит крыло книгохранилища. Каждый вид живой природы тысячами нитей тесно связан, прямо или косвенно, со всеми ныне живущими видами. Общеизвестно, что ДДТ был обнаружен не только в молоке кормящих женщин вдали от районов, где он применялся, но даже у пингвинов Антарктики.

Специфика человека как вида заключается в том, что он тесно связан с эксплуатацией (в одних случаях разумной, в других — неразумной) не только ныне существующих связей между живыми организмами и продуктами их жизнедеятельности, но и с использованием результатов жизнедеятельности прошлых эпох, продуктов биогенного происхождения — нефти, газа, торфа, каменного угля.

Мы, разумеется, отдаем себе отчет в том, что «свежесть» воздуха, содержание в нем кислорода, связана с процессом фотосинтеза зеленых растений. Но каковы масштабы этого процесса? Помним ли мы о том, что один гектар городского парка дает вчетверо меньше кислорода, чем гектар не угнетенного городскими дымами леса? Кислород, которым мы сегодня дышим и который используется в качестве окислителя при сгорании ископаемого топлива, образовался за две-три тысячи лет интенсивной фотосинтетической деятельности растений всего мира — как сухопутных, так и морских, как деревьев, так и микроскопических водорослей. Современный самолет сжигает ту нефть, которая образовалась из отмерших организмов, живших сотни миллионов лет назад, расходует тот кислород, который появился во времена основания Рима.

Озоновый экран — хрупкая оболочка, спасающая жизнь на Земле от испепеляющего действия ультрафиолетовых лучей, — возник из кислорода биогенного происхождения 400–500 миллионов лет назад. Нарушение этого защитного слоя (а оно, в частности, происходит в результате появления в атмосфере фреона, не говоря уже о последствиях, которыми грозит ядерная война) сделает невозможной жизнь на суше. Возобновление же озонового экрана происходит чрезвычайно медленно и длится тысячи лет.

Для питья, орошения, для самых разнообразных технологических нужд человек нуждается в чистой воде. Но чем обеспечивается чистота воды? Она — результат биогенных процессов, т. е. процессов биологической очистки малых и больших водоемов — от лужицы до Мирового океана.

Чистота вод озера Байкал объясняется не просто тем, что в него впадает 300 относительно чистых сибирских рек. Эти реки несут с собой муть, взвеси, остатки отмерших организмов. И если бы не уникальная фауна и флора Байкала, осуществляющая процесс биологической самоочистки, то озеро в лучшем случае представляло бы собой отстойник для приносимой в него «мертвой» воды. Только один вид байкальских полумикроскопических рачков — эпишура — за год 30 (!) раз профильтровывает через свои жабры 50-метровую толщу вод поверхностных слоев Байкала. А за чистоту более глубоких слоев ответственны другие, подчас мельчайшие, организмы. И всех их в Красную книгу не запишешь. Все они — от эпишуры и омуля до человека — связаны между собой тысячами сложных связей, обеспечивающих крайне хрупкое биологическое равновесие этого сообщества. Его нарушение в каком-нибудь одном звене, резкое уменьшение численности одного вида, который нам подчас кажется второстепенным, может со временем привести к гибели всей системы.

Почва, воздух, вода — продукты жизнедеятельности многих десятков тысяч видов организмов. Скромные почвы Нечерноземья, подзолы Верхневолжья, Валдая и Новгородской земли относительно молоды — они начали формироваться после того, как ушел последний ледник; им 12–16 тысяч лет, а это значит, что они вдвое старше древнейших цивилизаций человека в долине Нила. Возраст знаменитых южнорусских, украинских, кубанских, алтайских и менее мощных североказахстанских черноземов измеряется многими десятками, а то и сотнями тысяч лет. Наши предки жили еще в пещерах, умели лишь поддерживать, но не добывать огонь, когда в результате взаимодействия тысяч видов микроорганизмов, грибов, зеленых растений и животных шло образование чернозема, который начал использоваться для земледелия в европейской части России всего 250–350 лет назад, на Алтае — около 75, а в Казахстане менее 30 лет назад.

Неумелой пахотой вдоль, а не поперек склона тракторист за один сезон может разрушить пахотный слой почвы, на образование которого ушли сотни, а иной раз и тысячи лет. Неумелое применение удобрений или ядохимикатов может повлечь за собой гибель тех или иных видов почвенной микрофлоры и микрофауны, исчезновение которых не так бросается в глаза, как неграмотная пахота, но результат может оказаться не менее плачевным.

Уже сейчас население многих стран не в состоянии полностью обеспечить свои потребности в продуктах питания за счет продукции собственных почв. Не следует слишком уповать на Мировой океан — его биопродуктивность несравненно ниже биопродуктивности суши. Правда, международная кооперация в какой-то степени может компенсировать недостаточную продуктивность почв одной страны за счет экспорта ее минеральных ресурсов, сырья или промышленных товаров.

Сегодня на Земле рубятся леса, заложенные еще в те времена, когда в России существовало крепостное право. С точки зрения сохранения баланса кислорода на Земле нас не может удовлетворить равенство между числом гектаров вырубленного и посаженного леса. Ведь фотосинтетическая продуктивность взрослого дерева не идет в сравнение с таковой у саженца. Уже сейчас в ряде промышленно развитых стран при сгорании топлива расходуется гораздо больше кислорода, чем выделяется растениями при фотосинтезе. Значит, эти страны пользуются, пока безвозмездно, кислородом, «произведенным» в других странах, в частности кислородом сибирской тайги.

Особую роль в обеспечении Земли кислородом играют влажные тропические леса Южной Америки, Экваториальной Африки, Индокитая. Это как бы «легкие» нашей планеты. Не получая от высокоразвитых стран компенсации за сохранение этих лесов, развивающиеся страны вынуждены интенсивно вырубать их ради получения экспортной древесины. Тем самым человечество все более быстрыми темпами нарушает кислородный баланс Земли. Общество будущего, вероятно, по-иному будет оценивать роль в экономике тех или иных видов деревьев: так, быстровосстанавливающиеся осина или береза, чья древесина сейчас не имеет особой товарной ценности, могут значительно быстрее, чем хвойные деревья с ценной древесиной, восстановить фотосинтетическую роль вырубленного леса.

Неумеренное применение ядохимикатов в сельском и лесном хозяйстве наряду с «вредителями» уничтожает множество полезных видов насекомых-опылителей, хищников и паразитов вредных насекомых. Тем самым сообщество видов, потеряв своеобразие, теряет и устойчивость.

Деление видов на «полезные» и «вредные» давно устарело. Надо помнить, что каждый вид играет свою роль в экономике природы, а следовательно, и в жизни человека. Неприятные нам комары служат пищей для множества видов насекомоядных животных, в том числе стрекоз. Стрекозы, чьи личинки развиваются в воде, гораздо чувствительнее к загрязнению воды, чем личинки комаров. В местах, где водятся стрекозы, вода не слишком загрязнена. Загрязняя воду, человек невольно способствует исчезновению стрекоз и росту численности кровососущих насекомых. Этот пример несколько упрощен, но жители больших городов должны помнить: там, где летают стрекозы, опыляют цветы пчелы, шмели и другие насекомые, где на деревьях еще растут лишайники, воздух чист, биоценоз не нарушен, лес, поле, луг, водоем активно участвуют в круговороте веществ и энергии и этим круговоротом способны компенсировать то наступление на природу, которое неминуемо связано с цивилизацией. Но если лес или парк лишены хотя бы части из этих видов, они не способны нормально функционировать. Еще раз напомним, что, как показали исследования ленинградских ботаников, один гектар леса выделяет такое же количество кислорода, что и четыре гектара лесопарка, угнетенного выбросами промышленных газов в атмосферу. И это связано, в частности, с тем, что биоценозы городских парков резко обеднены по сравнению с лесными.

Полагаю, приведенных примеров достаточно, чтобы показать не только познавательную, но и практическую важность сохранения всего видового разнообразия живой природы, о котором говорится в предлагаемой вниманию читателя книге.

Научно-популярные книги, как правило, пишутся двумя категориями авторов: учеными, лично добывающими факты (таковы книги К. А. Тимирязева, В. А. Обручева, Э. Сетон-Томпсона, А. Е. Ферсмана, С И. Вавилова, Тура Хейердала, H. Н. Плавилыцикова, И. А. Ефремова, Б. Гржимека), и писателями-популяризаторами — вспомним О. Писаржевского, Д. Данина, В. Полынина и др. Если строго придерживаться такого разделения, то Дэвида Эттенборо, казалось бы, следовало отнести ко второй группе авторов. Обычно успех книг писателей-популяризаторов связан с глубоким проникновением в проблематику, о которой они пишут, а в лучшем случае — и в дух самой науки, представляемой широкому читателю.

В книге «Жизнь на Земле» приведено множество новейших сведений, зарытых в узкоспециальных изданиях. К их числу, например, относится описание относительно недавно открытой докембрийской фауны многоклеточных, интенсивное изучение которой ведется и советскими палеонтологами под руководством акад. Б. С. Соколова. Отметим, правда, что кое в чем автор отдает дань старым традициям. Так, он упорно придерживается аристотелевой двухцарственной системы живой природы. Вместе с тем современная наука делит все живое иначе: выделяются две группы (империи) — неклеточные (вирусы и фаги) и клеточные (к ним относятся все остальные организмы). Последние разделяются на два надцарства — предъядерные (или прокариоты — бактерии, сине-зеленые) и ядерные (или эукариоты). В пределах эукариот выделяется не менее трех царств — зеленые растения, грибы и животные. Но не следует осуждать автора за такое несколько архаичное членение органического мира — ведь и в университетах до сих пор грибы, а иногда и бактерии и сине-зеленые рассматриваются в курсе ботаники вместе с настоящими зелеными растениями.

Дэвид Эттенборо известен тем, что он снимал фильмы о животных в разных уголках Земли. А для того чтобы снять такие фильмы, мало знакомства с зоологической литературой и навыков профессионального оператора. Необходимо знать образ жизни снимаемых объектов так, как его может не знать и профессиональный зоолог. Лишь при этом условии удастся запечатлеть такие уникальные кадры, как группу шимпанзе в Танзании за ритуальным туалетом, прыжок мамаши лемура катта с детенышем на спине в лесах Мадагаскара или сфотографировать почти в лоб трехпалого ленивца в тропиках Центральной Америки. Помимо превосходного знания литературы и популяризаторского дара Дэвид Эттенборо отлично знает «в лицо» те объекты, о которых пишет. В этом отношении его книга не подходит ни под одну из упомянутых выше категорий научно-популярных книг — она написана популяризатором, профессионально знающим животных.

Мне хотелось бы пожелать читателям этой книги не только восхититься удивительным разнообразием форм жизни на Земле, яркостью красок тропических видов, но и помнить о том, сколь важно нам сохранить и передать потомкам все многообразие видового населения нашей планеты. Ведь уже сейчас ясно, что по крайней мере в пределах нашей Солнечной системы феномен жизни уникален.

Проф. H. Н. Воронцов

Введение


Двадцать пять лет назад я впервые побывал в тропиках. Я и сейчас совершенно ясно помню, какое потрясение испытал, когда вышел из самолета и вдохнул тяжелый, напоенный ароматами воздух Западной Африки. Словно вошел в парилку: влажность была такая, что через несколько минут моя одежда промокла насквозь. Здания аэропорта окружала живая изгородь из гибискуса. Над ней, сверкая, как зелено-голубые драгоценные камни, порхали нектарницы, переносились с одного багряного цветка на другой, повисали на трепещущих крылышках, пили душистый сок. Я некоторое время любовался ими и только потом заметил вцепившегося в ветку хамелеона, совсем неподвижного — только выпученные глаза поворачивались вслед каждому пролетавшему насекомому. Проходя вдоль изгороди, я наступил на какую-то, как мне показалось, траву. К моему изумлению, листочки тут же свернулись, прижались к стеблям, и зеленые перья вдруг преобразились в сухие ветки. Это была стыдливая мимоза. За изгородью тянулся ров, весь заросший водными растениями. Черная вода между листьями бурлила рыбой, а по ним расхаживала рыжевато-коричневая птица, поднимая ноги с удлиненными пальцами размеренно и осторожно, как человек в снегоступах. Куда ни падал мой взгляд, я видел неожиданное, невероятное буйство форм и красок. Так мне открылись великолепие и плодовитость живой природы, и это впечатление я сохранил навсегда.

Почти каждый год после этой первой поездки я так или иначе ухитрялся побывать в тропиках. Чаще всего — чтобы снять фильм об одном из уголков этого бесконечно разнообразного мира. Вот так мне выпадало счастье месяцами путешествовать, чтобы найти и заснять какое-нибудь редчайшее животное, которого почти никто не видел в естественной обстановке, своими глазами увидеть те чудеса, что встречаются лишь в заповедной глуши: дерево на Новой Гвинее, ветви которого усеяны райскими птицами, демонстрирующими свое оперение, огромных лемуров, прыгающих по мадагаскар-скому лесу, крупнейших ящериц мира — комодских варанов, подобно драконам рыщущих в джунглях крохотного индонезийского островка.

В своих фильмах мы стремились запечатлеть жизнь того или иного животного, показать, как оно находит корм, защищается, совершает ритуал ухаживания, а также как оно связано с сообществами окружающих его животных и растений. Но одного аспекта не хватало — мы редко исследовали специфику его анатомического строения. Понятие «ящерица», например, полностью выявляется только в свете возможностей и ограничений, определяемых тем, что она пресмыкающееся, а это в свою очередь становится ясным только в свете ее происхождения.

Вот так родилась идея снять серию фильмов о животных под несколько иным углом зрения, чем прежде. Это должны были быть фильмы не просто по естественной истории в обычном смысле этого выражения, но фильмы об истории природы как таковой. Мы поставили перед собой задачу дать обзор всего животного царства и рассмотреть каждую группу животных с точки зрения той роли, которую она играла в долгой драме жизни с самого начала и до наших дней. Эта книга порождена тремя годами путешествий и исследований, которые потребовались для создания задуманных фильмов.

Стремление сконцентрировать три миллиарда лет на трехстах-четырехстах страницах, уложить описание группы животных, состоящей из десятков тысяч видов, в одну главу заведомо подразумевает большие пробелы. Вот почему я старался выделить одну наиболее существенную черту в истории данной группы, а затем сосредоточиться на ее прослеживании, стойко игнорируя все прочие аспекты, какими бы заманчивыми они ни казались.

Тут, однако, возникает опасность приписать животному царству некую целенаправленность, которой в действительности не существует. Дарвин показал, что движущая сила эволюции возникает из случайных генетических изменений, накапливавшихся на протяжении смены бесчисленных поколений и проходивших жесткую проверку естественным отбором. При описании последствий этого процесса очень трудно избежать слов, создающих впечатление, будто животные сами целеустремленно добивались этих изменений: скажем, что рыбы «стремились» выбраться на сушу и сменить плавники на ноги, а пресмыкающиеся «хотели» летать, старались превратить чешую в перья и в конце концов стали птицами. Не существует ни малейших объективных свидетельств чего-либо подобного, и я, описывая эти процессы по возможности в четкой и сжатой форме, старался избегать слов и выражений, подразумевающих какую-то волюнтарность.

Как ни странно, среди современных животных форм можно найти прекрасные модели тех древних существ, их далеких предков, которые были героями почти всех узловых событий естественной истории. На примере современной двоякодышащей рыбы можно видеть, каким путем шло развитие легких, а азиатский оленек канчиль очень похож на первых копытных млекопитающих, которые паслись в лесах 50 млн. лет назад. Однако, чтобы не возникло недоразумений, необходимо с самого начала четко сформулировать принципы такой подмены. В редких случаях современный вид как будто ничем не отличается от своих предков, чьи окаменелые остатки сотни миллионов лет хранятся в горных породах. Ниша, занимаемая им в окружающей среде, по той или иной причине оставалась неизменной на протяжении этого необъятного срока и во всех отношениях его устраивала, так что ему незачем было меняться. Тем не менее в подавляющем большинстве случаев ныне живущие виды, хотя и сохранили какие-то существенные черты предков, во многом заметно от них отличаются. Двоякодышащая рыба и оленек во многом сходны со своими предками, но отнюдь не могут считаться их полным подобием. Излишне каждый раз подчеркивать это отличие фразой вроде «предковые формы, близко напоминающие ныне живущих животных», однако это подразумевается во всех случаях, когда для обозначения древнего существа будет употребляться наименование современного животного.

Я использовал по преимуществу обиходные названия вместо научных латинских, чтобы животное, появляющееся на страницах этой истории, было легче узнать. Те, кто захотят подробнее разобраться в его строении и биографии по специальным книгам, найдут его научное название в указателе. Возраст я обозначал в миллионах лет, а не с помощью наименований периодов, принятых в классической геологии. Преобразовать хронологический возраст в геологический можно, посмотрев генеалогическое древо в конце книги. И наконец, последнее: я не ссылаюсь поименно на многочисленных ученых, из чьих трудов почерпнуты факты и теории, излагаемые в книге. Сделано это исключительно для того, чтобы не нарушать стройности повествования. Разумеется, все мы перед ними в огромном долгу — все, кто любит животных, и я вовсе не хотел бы преуменьшить этот долг. Их исследования дали нам самое главное — способность понимать единство и преемственность природы и определять наше место в ней.


1. Бесконечное разнообразие


Открыть неизвестное животное совсем нетрудно. Если провести день в тропическом южноамериканском лесу, переворачивая коряги, заглядывая под кору, шаря в сыром перегное, а вечером установить там белый экран и осветить его ртутной лампой, можно собрать сотни экземпляров мелких существ, таких, как ночные бабочки, гусеницы, пауки, жуки-долгоносики, светляки, безобидные мухи с осиной раскраской, осы, похожие на муравьев, палочки, которые бегают, листья, которые разворачивают крылья и улетают. Их будет множество, и среди этого разнообразия почти непременно найдется вид или подвид, еще не описанный наукой. Труднее найти специалиста, который разбирался бы в них настолько, чтобы выделить новые, неизвестные формы.

Никто не может точно сказать, сколько видов животных обитает в этих сумрачных оранжерейно душных лесах. Их зеленая чаща скрывает богатейший и поразительно разнообразный конгломерат животной и растительной жизни, какой, пожалуй, не найти больше нигде на Земле. Не говоря уж о многочисленности крупных категорий животных — обезьян, грызунов, пауков, колибри, бабочек, — каждая из этих категорий объединяет огромное количество разных форм. Одних попугаев существует более 40 видов, обезьян — свыше 70, колибри — до 300, а бабочек и вовсе десятки тысяч. Если вы не побережетесь, вас искусают сотни различных видов москитов.

В 1832 году такой лес в окрестностях Рио-де-Жанейро посетил 23-летний англичанин Чарлз Дарвин, совершавший кругосветное плавание в качестве натуралиста на английском военном бриге «Бигль». За один день на небольшом участке он собрал 68 разных видов одного мелкого жучка. Его поразило такое число видов, принадлежащих к одному роду. И ведь он не разыскивал их специально! Вот почему он записал в своем дневнике: «Этого достаточно, чтобы энтомолог лишился душевного спокойствия, представив себе будущие размеры полного каталога». В те времена считалось, что все виды неизменны и каждый из них был отдельно и особо сотворен богом. Дарвин отнюдь не принадлежал к атеистам — как-никак он получил в Кембридже богословскую степень, — но эта поразительная множественность форм повергла его в глубокое изумление.

В течение следующих трех лет «Бигль» спустился к югу, обогнул мыс Горн и вновь поплыл на север вдоль побережья Чили. Затем экспедиция повернула в открытое море и достигла уединенных Галапагосских островов примерно в тысяче километров от Американского континента. Там Дарвин вновь задался вопросом о происхождении видов, так как на этом архипелаге он увидел новое разнообразие. Особенно его заинтересовало то обстоятельство, что островные животные, в целом сходные с теми, которых он видел на материке, отличаются от них во многих частностях. Например, бакланы — черные птицы с длинными шеями, отличные ныряльщики, которые в поисках добычи проносились над самой поверхностью бразильских рек, — здесь, на Галапагосах, вовсе не могли летать, потому что крылья у них были маленькие, с короткими перьями. Или игуаны — крупные ящерицы с чешуйчатым гребнем на спине. Материковые игуаны лазали по деревьям и ели листья. Здесь же, на островах, где растительность была скудной, игуаны питались морскими водорослями и цеплялись за скалы над кипящим прибоем необычно длинными и мощными когтями. И еще черепахи — очень похожие на материковых, но только куда больше их, настоящие колоссы, способные возить на спине человека. От английского вице-губернатора островов Дарвин узнал, что единообразия нет даже в пределах архипелага — черепахи каждого острова обладают небольшими различиями, позволяющими сразу определить, откуда какую привезли. У черепах, обитающих на островах, где имеются источники воды, а следовательно, и трава, передний край верхнего панциря полого загибается вверх у самой шеи. Но у жительниц безводных островов, которым приходится вытягивать шеи, чтобы достать ветки кактусов или дотянуться до листьев на деревьях, шеи гораздо длиннее, а край панциря круто отогнут, так что они способны поднять шею почти вертикально.

Дарвин начинал все сильнее подозревать, что виды вовсе не остаются неизменными во веки веков. А вдруг один переходит в другой? Может быть, много тысяч лет назад птицы и пресмыкающиеся с американского континента попали на Галапагосский архипелаг на тех плотах из гниющих растений, которые реки выносят в море? И тут, приспосабливаясь к условиям своего нового места обитания, они понемногу из поколения в поколение менялись, пока не стали нынешними видами.

Различия между ними и их родичами на материке были невелики, но раз они все-таки возникли, нельзя ли предположить, что на протяжении многих миллионов лет изменения в той или иной династии животных, мало-помалу накапливаясь, со временем оказались столь велики, что совершенно ее преобразили? Может быть, у рыб развились мускулистые плавники, что позволило им выползти на сушу и стать земноводными, а земноводные в свою очередь обрели водонепроницаемую кожу и стали пресмыкающимися; может быть даже, некие обезьяноподобные существа привыкли ходить на задних лапах, выпрямились и стали предками человека.

Собственно говоря, эта идея была не так уж и нова. И до Дарвина многие ученые высказывали предположение, что все формы жизни на Земле тесно связаны между собой. Революционность дарвиновского прозрения заключалась в том, что он обнаружил механизм изменений и, таким образом, заменил философские умозаключения подробным описанием конкретных процессов, подкрепив его обильными доказательствами, которые можно было подвергнуть критической проверке. В результате отрицать существование эволюции больше уже было нельзя.

Вкратце ход рассуждений Дарвина сводился к следующему: особи одного вида не идентичны. Так, например, из кладки, отложенной одной слоновой черепахой, по генетическим причинам выйдут черепашки с шеями чуть разной длины, и в засушливое время те, у которых шеи длиннее, сумеют дотянуться до листьев и выживут. А их братья и сестры с шеями покороче лишатся корма и погибнут от голода. Так произойдет отбор особей, наиболее подходящих к среде их обитания, и они смогут передать эту полезную особенность своему потомству. После смены огромного числа поколений у черепах на засушливом острове шеи будут длиннее, чем у черепах на островах с пресными источниками. Так из одного вида возникнет другой.

Эта идея четко сложилась у Дарвина много времени спустя после того, как он уехал с Галапагосских островов. Опубликовал он ее только в 1859 году, когда ему уже было 50 лет, да и то потому лишь, что другой, более молодой натуралист, Алфред Уоллес, работавший в Юго-Восточной Азии, пришел к тем же выводам. Книгу, в которой он подробно изложил свою теорию, Дарвин назвал «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых форм в борьбе за жизнь».

После этого теория естественного отбора снова и снова оспаривалась и проверялась, уточнялась, исправлялась и дополнялась. Недавние открытия в генетике, молекулярной биологии, динамике популяций и этологии (науке о поведении) придали ей новую глубину и широту. Она служит ключом к пониманию мира природы и помогает нам осознать, что жизнь на Земле имеет долгую и непрерывную историю, на протяжении которой организмы как растительные, так и животные менялись от поколения к поколению, осваивая все уголки мира.

Непосредственные, хотя и разрозненные свидетельства этой истории хранятся в архивах Земли — в осадочных породах. Подавляющее большинство животных, умирая, не оставляет зримых следов своего существования. Их плоть истлевает, их панцири, раковины и кости рассыпаются в прах. Но изредка одной-двум особям из многотысячной популяции выпадает иная судьба. Пресмыкающееся увязает в болоте и гибнет. Его тело истлевает, но кости остаются в иле. Их покрывают погибшие растения, опустившиеся на дно. Проходят века, растительных остатков накапливается все больше, они превращаются в торф. Меняется уровень океана, его волны затопляют болото, поверх торфа слой за слоем осаждается песок. За неимоверно долгое время торф спрессовывается, превращается в каменный уголь. А кости пресмыкающегося по-прежнему покоятся в нем. Огромное давление осадков и омывающие их насыщенные растворы минеральных солей вызывают изменения в химическом составе костей, состоящих главным образом из кальция и фосфора. В конце концов они окаменевают, однако сохраняют при этом не только внешнюю форму, которую имели при жизни животного, — хотя и несколько искаженную, — но порой даже клеточную структуру, так что, рассматривая их срезы под микроскопом, можно видеть форму сосудов и нервов, некогда их окружавших.

Наиболее благоприятные условия для окаменения создаются в морях и озерах, где медленно накапливаются отложения песчаников и известняков. На суше, где в основном породы не создаются за счет нарастания отложений, а наоборот, разрушаются эрозией, отложения вроде песчаных дюн возникают и сохраняются очень редко. Вот почему из сухопутных животных окаменеть могут практически только те, трупы которых оказались в воде. Поскольку такая судьба для большинства является исключительной, окаменелости вряд ли когда-либо дадут нам хотя бы относительно полное представление о всем разнообразии сухопутных животных, существовавших на Земле. У водных животных — рыб, моллюсков, морских ежей и кораллов — куда больше шансов сохраниться. И все же лишь очень немногие из них погибли при физических и химических условиях, необходимых для окаменения. Из этих немногих лишь ничтожный процент заключен в породах, которые в настоящее время оказались на поверхности Земли. А из них почти все будут разрушены эрозией прежде, чем успеют попасть в руки охотников за окаменелостями. Остается лишь удивляться тому, что при столь малых шансах все-таки было собрано такое количество окаменелостей и заключенная в них летопись так подробна и последовательна.

Как можно их датировать? Открытие радиоактивности подсказало ученым, что в породах заключены геологические часы. Некоторые химические элементы с течением времени распадаются, при их распаде происходит радиоактивное излучение. Калий переходит в аргон, уран — в свинец, рубидий — в стронций. Скорость этого распада можно вычислить и на основании соотношения вторичного и первичного элементов в данной породе определить, когда именно образовался исходный минерал. Поскольку существует несколько пар таких элементов и распад происходит с разной скоростью, возможна перекрестная проверка. Этот способ, требующий чрезвычайно сложных методов анализа, всегда будет областью специалистов. Но кто угодно может с помощью простой логики определять относительный возраст пород и таким образом устанавливать порядок основных событий в палеонтологической летописи. Если породы лежат слоями и слои не слишком смещены, нижний слой должен быть старше верхнего. Вот так мы можем читать историю жизни по слоям и прослеживать происхождение животных вплоть до самых истоков, проникая все глубже и глубже в земную кору.

Самый глубокий разрез земной поверхности — Большой Каньон на западе США. Породы, сквозь которые река Колорадо проложила себе путь, все еще лежат более или менее горизонтально, слой на слое — рыжие, бурые и желтые, иногда розовеющие в утреннем свете или голубеющие в туманной дали. Земля здесь так суха, что лишь кое-где можжевельник и низкие кусты пятнают обрывы, и обнаженные пласты пород, одни твердые, другие мягкие, видны ясно и четко. По большей части это песчаники или известняки, выстилавшие дно мелких морей, которые некогда покрывали эту область Северной Америки. Приглядевшись, можно заметить нарушения в последовательности слоев — они соответствуют эпохам, когда суша поднималась, моря отступали и их бывшее дно высыхало, а накопившиеся отложения съедала эрозия. Затем суша вновь опускалась, моря возвращались на прежнее место и вновь их дно покрывалось отложениями. Несмотря на эти разрывы, общие линии истории окаменелостей прослеживаются ясно.

Верхом на муле без особого труда можно за день спуститься с верхнего края каньона на самое его дно. Первые же породы, мимо которых вы проезжаете, уже имеют возраст около 200 млн. лет. Они не содержат остатков млекопитающих или птиц, но пресмыкающиеся оставили о себе память. Почти рядом с тропой тянется цепочка следов, пересекающая глыбу песчаника. Это отпечатки лап какого-то небольшого четвероногого существа, почти наверное похожего на ящерицу, — пресмыкающегося, которое пробежало по пляжу. В других местах на том же уровне обнаружены отпечатки листьев папоротника и крыльев насекомых.

На полпути до дна каньона видны известняки, возраст которых равен 400 млн. лет. Тут уже нет пресмыкающихся, зато есть кости своеобразной панцирной «рыбы». Еще через час — и на 100 млн. лет раньше — вы едете мимо пород, которые не содержат никаких следов позвоночных животных. Кое-где попадаются раковины, да черви оставили кружево следов в том, что некогда было илистым морским дном. Проехав три четверти пути, вы все еще видите по сторонам пласты известняков, но в них уже не найти ни малейших признаков древней жизни. Под вечер вы наконец оказываетесь в нижнем ущелье, где между высокими скалистыми обрывами катит зеленоватые воды река Колорадо. Отсюда до верхнего края каньона по прямой каких-нибудь полтора километра, а породы вокруг датируются колоссальным возрастом в 2 млрд. лет! Тут, казалось бы, можно обнаружить свидетельства самого начала жизни. Однако в обнаженных породах — никаких органических остатков. Темные, мелкозернистые, они лежат не горизонтальными слоями, как выше по склону, но круто изогнуты, вспучены и пронизаны жилами розового гранита.

Не потому ли признаки жизни отсутствуют здесь, что эти породы и известняки, лежащие непосредственно над ними, непостижимо стары и все ее следы были в них стерты? Неужели первыми существами, оставившими о себе память, были такие сложные организмы, как черви и моллюски? Много лет эти вопросы мучили геологов. Поиски органических остатков в древних породах велись по всему миру. Были обнаружены два-три необычных образования, однако, по мнению подавляющего большинства специалистов, они возникли в результате физических процессов формирования пород и к живым организмам никакого отношения не имели. Затем в 50-х годах исследователи начали изучать наиболее загадочные породы под мощными микроскопами.

В полутора тысячах километров к юго-востоку от Большого Каньона, на берегах озера Верхнего, есть выходы древних пород примерно одного возраста с породами по берегам Колорадо. Некоторые из них содержат тонкие прослои мелкозернистых кремнистых сланцев. Это место было известно давно, так как первые поселенцы выламывали здесь кремни для ружей. Кое-где там видны загадочные белые концентрические кольца диаметром около метра. Что это — следы, оставленные течениями на илистом дне первозданных морей, или их могли образовать живые организмы? Точно ответить не мог никто, и кольцам дали нейтральное название «строматолиты» — от греческих слов, означающих всего лишь «каменный ковер». Но когда исследователи спилили секции этих колец, отшлифовали их в тончайшие прозрачные пластинки и рассмотрели под микроскопом, они обнаружили остатки простых организмов не более одной-двух сотых миллиметра в поперечнике. Некоторые напоминали нити водорослей, другие, хотя, несомненно, принадлежали к органическому миру, не имеют аналогий среди ныне живущих организмов, а третьи казались идентичными бактериям — самой простой из современных форм жизни.

Многим ученым не верилось, что крохотные микроорганизмы вообще могли подвергнуться окаменению, а уж то, что окаменелости эти уцелели на протяжении столь долгого времени, и вовсе казалось невероятным. Раствор кремнезема, пропитавший мертвые организмы и затвердевший в кремни, был, несомненно, самым прочным из всех существующих средств консервации. Находка окаменелостей в Ганфлинт-Черте стимулировала дальнейшие поиски не только в Северной Америке, но повсюду в мире, и другие микроокаменелости были найдены в кремнеземе Африки и Австралии. Некоторые из них, как ни удивительно, оказались старше Ганфлинт-Черта на миллиард лет. Однако, если мы хотим разобраться в том, как возникла жизнь, нам необходимо заглянуть еще на миллиард лет раньше, в ту эпоху, когда Земля была совсем безжизненной и только остывала после своего рождения.

Тогда наша планета почти во всех отношениях резко отличалась от той, на которой мы обитаем теперь. Окружавшие ее облака водяных паров уже сконденсировались и образовали моря, которые еще долго оставались горячими. Мы не знаем, как распределилась тогда суша, но в любом случае ничего похожего на современные материки не было — ни по форме, ни по местоположению. Бесчисленные вулканы извергали лаву и пепел. Атмосфера была разреженной и состояла из вихрей водорода, окиси углерода, аммиака и метана. Кислорода, возможно, не было вовсе. Эта смесь почти не задерживала ультрафиолетового солнечного излучения, и оно достигало земной поверхности с интенсивностью, которая была бы смертельной для современных форм жизни. То и дело разражались чудовищные грозы, обрушивая молнии и на сушу, и на море.

В 50-х годах проводились лабораторные эксперименты, показавшие, что могло происходить в подобных условиях с перечисленными выше химическими веществами. Смесь этих газов с водяными парами подвергали воздействию электрических разрядов и ультрафиолетовых лучей. Всего лишь через неделю в смеси появились сложные молекулы, в том числе сахара, нуклеиновые кислоты и аминокислоты — те кирпичики, из которых строятся белки. Несомненно, подобные молекулы могли образовываться в морях Земли на самой заре ее истории.

Прошли миллионы лет, концентрация этих веществ заметно увеличилась, и молекулы начали взаимодействовать, образуя все более сложные вещества. Не исключено, что кое-какие компоненты могли быть занесены из космоса метеоритами. Со временем среди огромного разнообразия химических соединений появилось то, которое стало решающим для дальнейшего развития жизни. Оно называется дезоксирибонуклеиновой кислотой, или сокращенно ДНК. Структура ДНК обеспечивает ей два важнейших свойства: во-первых, она служит как бы матрицей для выработки аминокислот и, во-вторых, обладает способностью к самовоспроизведению. В ДНК молекулы достигли порога чего-то принципиально нового, так как эти два свойства ДНК присущи и живым организмам вроде бактерий. А ведь бактерии не только простейшая известная нам форма жизни, они и найдены были среди самых древних окаменелостей.

Способность ДНК к самовоспроизведению заложена в ее уникальном строении. ДНК имеет форму двойной спирали. В процессе деления клеток она разделяется по всей длине на две отдельные спирали. Каждая становится матрицей, к которой прикрепляются другие, более простые молекулы, и в конце концов, превращается в новую двойную спираль.

Есть только четыре вида простых молекул, из которых в основном строится ДНК, но они группируются по трое и располагаются в невероятно длинной молекуле ДНК в особом и значимом порядке. Этот порядок определяет, каким именно образом примерно два десятка различных аминокислот располагаются в белке, сколько их нужно выработать и когда именно. Отрезок ДНК, несущий информацию для непрерывной последовательности построения белка, называется геном.

Иногда связанный с воспроизведением процесс копирования ДНК может пойти неверно: в какой-то точке происходит ошибка или отрезок ДНК сдвинется и займет другое место. В результате копия получается неточной и созданный ею белок может оказаться совершенно иным. Когда это произошло с первыми живыми организмами, на Земле началась эволюция, так как подобные ошибки в копировании являются источником вариантов, которые путем естественного отбора приводят к эволюционным изменениям. И благодаря микроокаменелостям мы знаем, что уже 3 млрд. лет назад существовало несколько форм бактериевидных организмов.

Воображение бессильно охватить подобные сроки, но мы можем получить некоторое представление о сравнительном соотношении основных этапов истории жизни, если приравняем время, протекшее между этими первыми ее зачатками до наших дней, к одному году. Мы вряд ли уже открыли самые древние окаменелости, и, значит, жизнь началась не 3 млрд. лет назад, а еще раньше, так что один день этого условного года будет соответствовать, грубо говоря, 10 млн. лет. По такому календарю окаменелости похожих на водоросли организмов Ганфлинт-Черта, выглядевшие столь древними, когда их открыли, оказываются довольно поздними персонажами в истории жизни, поскольку на сцене они появились только во второй неделе августа. Наиболее древние следы червей в Большом Каньоне были проложены по илу во второй неделе ноября, а первые рыбы появились в известняковых морях неделю спустя. Маленькая ящерица пробежала по пляжу в середине декабря, а человек возник только вечером 31 декабря.

Но вернемся к январю. Первоначально бактерии питались разнообразными углеродными соединениями, которые накапливались в первозданных морях долгие миллионы лет. Но чем больше становилось бактерий, тем меньше должно было оставаться этой пищи. Совершенно очевидно, что бактерия, сумевшая использовать иной источник питания, должна была оказаться в значительном выигрыше, и в конце концов некоторым из них нечто подобное удалось. Вместо того чтобы поглощать готовую пищу из окружающей среды, они начали производить ее в собственной клетке, черпая необходимую энергию из солнечного света. Этот процесс называется фотосинтезом. Для него, в частности, требуется водород — газ, который в больших количествах выделяется во время вулканических извержений.

В настоящее время условия, очень сходные с теми, в которых жили древнейшие фотосинтезирующие бактерии, можно найти в таких вулканических районах, как Йеллоустон в американском штате Вайоминг. Там огромная расплавленная масса, лежащая всего в каком-нибудь километре под поверхностью земли, нагревает породы вверху. Во многих местах подпочвенные воды имеют температуру выше точки кипения. Они поднимаются по трещинам в породе под все уменьшающимся давлением и внезапно вырываются наружу высокими струями пара и воды. Это гейзеры. В других местах вода разливается на поверхности горячими лужами. По мере того как она растекается и охлаждается, соли, растворявшиеся в ней, пока она прокладывала себе путь вверх, и полученные от расплавленной массы внизу, осаждаются, образуя высокие закраины бассейнов с ярусами террас под ними. В этой почти кипящей, насыщенной минеральными солями воде живут и размножаются бактерии. Некоторые разрастаются в спутанные нити и клубки, другие — в толстые кожистые пласты. Многие ярко окрашены, причем интенсивность их цвета меняется на протяжении года, показывая, благоденствует ли колония или чахнет. Названия, данные этим бассейнам, отражают разнообразие бактерий и великолепие цветовых эффектов, которые они создают: Изумрудная Заводь, Серный Котел, Берилловый Ключ, Огненный Каскад, Заводь Утренней Зари и (бассейн, особенно богатый разными бактериями) Палитра Художника.

Бродя по этой фантастической местности, постоянно ощущаешь характерную вонь тухлых яиц — запах сероводорода, порождаемого реакцией подземных вод с расплавленными породами глубоко внизу. Именно из сероводорода здешние бактерии получают необходимый им водород, и пока они снабжались водородом только благодаря вулканической деятельности, это ограничивало возможность их распространения. Но со временем возникли новые формы, способные извлекать водород из практически вездесущего источника — воды. Их появление решающим образом повлияло на дальнейшее развитие жизни: ведь если от воды отнимают водород, остается второй составляющий ее элемент — кислород. Организмы, совершавшие эту операцию, по своему строению несколько сложнее бактерий. Их назвали сине-зелеными водорослями, потому что они выглядели как близкие родственники зеленых водорослей, которые можно видеть повсюду в прудах и болотах. Однако теперь, когда установлено, насколько они примитивны, их называют цианофитами или просто сине-зелеными. Содержащееся в них химическое вещество, позволяющее им использовать воду в процессе фотосинтеза, — хлорофилл. Он имеется также у истинных водорослей и у высших растений.

Сине-зеленых можно найти в любых скоплениях влаги. Ковры их, расшитые серебряными пузырьками кислорода, устилают дно прудов. В заливе Шарк-Бей на северо-западном берегу тропической Австралии они развились в особенно эффектную и о многом говорящую форму. Вход в Хемелин-Пул, небольшое ответвление этой огромной бухты, перегорожен песчаной отмелью, заросшей валлиснерией спиральной. Движение воды в заливчик и из него настолько затруднено, что от активного испарения под жгучим солнцем соленость в нем стала очень высокой. Из-за этого морские животные вроде моллюсков, которые в обычных условиях питаются сине-зелеными и не дают им особенно размножаться, там жить не могут. И сине-зеленые благоденствуют, никем не тревожимые, как в те далекие дни, когда они были наиболее развитой формой жизни на Земле. Они выделяют известь, образуя каменные подушки у берегов заливчика и искривленные колонны на большей глубине. Тут-то и кроется объяснение таинственных фигур, срезы которых видны на Ганфлинт-Черте. Сине-зеленые колонны Хемелин-Пула — это живые строматолиты, и, разглядывая их группы на испещренном солнечными бликами морском дне, мы словно переносимся в мир, от которого нас отделяют 2 млрд. лет.

Появление сине-зеленых было критическим моментом в истории жизни. Кислород, который они выделяли, накапливался сотни и сотни миллионов лет, создавая нашу современную атмосферу, значительную часть которой он составляет. От него зависит наша жизнь и жизнь всего живого. Мы нуждаемся в кислороде не только, чтобы дышать, — он защищает нас. Атмосферный кислород образует заслон, слой озона, который поглощает почти всю ультрафиолетовую часть солнечного излучения. Именно эти лучи обеспечивали энергию для синтеза аминокислот и сахаров в первозданном океане, а потому появление сине-зеленых исключило возможность того, что жизнь на Земле когда-либо вновь возникнет тем же способом.

На этой стадии развития жизнь пребывала очень долго. Но затем произошел следующий решительный скачок. Как именно это произошло, мы еще точно не знаем, но подобия организмов, возникших в результате этого скачка, можно найти буквально в любом пресном водоеме.

Капелька прудовой воды под микроскопом кишит крохотными организмами: одни вертятся, другие ползают, третьи ракетами проносятся поперек поля зрения. Их групповое название — простейшие. Все они — одноклеточные, однако внутри их оболочек находятся структуры куда более сложные, чем у бактерий. Основной компонент такой структуры — ядро, полное ДНК. Оно, по-видимому, и является организующей силой клетки. Продолговатые тельца — митохондрии — обеспечивают ее энергией, сжигая кислород, примерно так же, как бактерии. У многих клеток имеется быстро виляющий жгутик, который сходен с нитевидной бактерией спирохетой. Кроме того, некоторые простейшие организмы обладают хлоропластами — телами, содержащими хлорофилл и, подобно сине-зеленым, использующими солнечный свет для образования сложных молекул, служащих им пищей. Таким образом, каждый из этих мельчайших организмов как бы объединяет в себе ряд более простых организмов. По мнению некоторых исследователей, простейшие и представляют собой именно такое объединение. Быть может, клетка, которая обычно питалась, обволакивая другие частицы, при каких-то обстоятельствах включила в себя некоторое количество бактерий и сине-зеленых, оставшихся непереваренными, и в результате образовалось сообщество, ведущее единую жизнь в еще невиданной близости. Но каким бы образом ни возникли эти организмы, микроокаменелости свидетельствуют, что столь сложные клетки появились примерно 1200 млн. лет назад, то есть в начале сентября нашего условного «года жизни».

Простейшие, как и бактерии, размножаются делением, но их внутреннее строение гораздо сложнее, и, естественно, деление простейших — процесс тоже очень сложный. Большинство отдельных структур, входящих в сообщества, также делятся. Более того, митохондрии и хлоропласты, обладающие собственной ДНК, нередко делятся независимо от деления всей клетки. ДНК ядра разделяется особо сложным способом, обеспечивающим копирование всех ее генов, причем таким образом, что обе дочерние клетки получают полный их набор. У различных простейших существует еще несколько способов размножения. Они разнятся в частностях. Но характерной особенностью всех способов является та или иная перетасовка генов. В некоторых случаях это происходит, когда две клетки сливаются и обмениваются генами перед тем, как вновь разъединиться, а затем содержат два полных набора генов и после их перетасовки разделяются, образуя две новые клетки, но уже с одним набором в каждой. Такие клетки бывают двух типов — крупная, относительно неподвижная клетка и клетка поменьше, активная, передвигающаяся с помощью жгутика. В этом различии заложена основа разделения полов. Первая называется яйцеклеткой, вторая — сперматозоидом. Когда обе эти клетки сливаются в новую клетку, гены опять располагаются двумя наборами, но уже в новых комбинациях — с генами не одного родителя, а двух. Такая комбинация вполне может оказаться уникальной и даст чуть иной организм с новыми характерными чертами. Разделение организмов по полу увеличивало возможности генетических изменений и тем самым заметно повышало скорость эволюции.

Простейших насчитывается около 10 тысяч видов. Одни покрыты множеством колышащихся нитей, так называемых ресничек, согласованное движение которых обеспечивает перемещение в воде. Другие, в том числе амеба, движутся по-иному: они выпячивают псевдоподии (ложноножки) и переливаются в них. Многие морские простейшие вырабатывают из кремнезема или углекислого кальция раковинки очень сложной структуры и поразительной красоты, открывающейся только исследователю, вооруженному микроскопом. Одни напоминают миниатюрные раковины улиток, другие — чудесные вазы и сосуды. Самые изящные слагаются из блестящего прозрачного кремнезема в концентрические сферы, пронизанные иглами, в готические шлемы, колокольни в стиле рококо и космические корабли в венце радиоантенн. Обитатели этих раковинок высовывают в отверстия длинные нити, которыми и захватывают частицы пищи.

Другие одноклеточные питаются с помощью фотосинтеза, что происходит благодаря содержащемуся в них хлорофиллу. Их можно считать растениями, а питающихся ими остальных членов группы — животными. Однако на таком уровне это различие выражено далеко не столь четко, как может показаться на первый взгляд, — ведь существует немало видов, которые способны в определенных условиях использовать и тот и другой способ питания.

Некоторые одноклеточные настолько велики, что видны невооруженным глазом. Потренировавшись, можно довольно быстро научиться различать в капле прудовой воды амебу — движущееся серое студенистое пятнышко. Однако рост одноклеточных организмов имеет предел, поскольку увеличение размеров затрудняет химические процессы, происходящие внутри клетки, и снижает их эффективность. Впрочем, увеличение размеров можно обеспечить иным способом — группировкой клеток в организованную колонию.

К таким колониальным видам принадлежит, например, вольвокс — полый шар величиной почти с булавочную головку, состоящий из большого числа клеток, снабженных жгутиками. Эти объединения замечательны тем, что составляющие их клетки практически ничем не отличаются от одиночных клеток, ведущих самостоятельное существование. Вместе с тем деятельность клеток, составляющих вольвокс, координированна — все жгутики на шаре движутся согласованно и гонят его в определенном направлении.

Такого рода координация между клетками, составляющими колонию, сделала новый шаг вперед около 800 млн. — 1 млрд. лет назад (где-то в октябре по нашему календарю), когда появились губки. Губки достигают значительной величины. Некоторые виды образуют на морском дне мягкие бесформенные подушки до 2 м. в поперечнике. Их поверхность пронизана мельчайшими порами, сквозь которые в тело с помощью жгутиков втягивается вода, извергаемая затем по более крупным каналам. Губка питается, отфильтровывая съедобные частицы из прогоняемого сквозь ее тело потока воды. Но компоненты ее связаны очень рыхло; отдельные клетки способны перемещаться по поверхности губки, как амебы. Когда две губки растут рядом, то по мере роста они могут сомкнуться и постепенно слиться в один организм. Если губку протереть сквозь мелкое марлевое сито так, чтобы она разделилась на отдельные клетки, эти клетки со временем вновь образуют губку и каждая займет в ее теле свое место. А самое замечательное состоит в том, что смешанные клетки двух губок, растертых таким образом, создадут единый организм смешанного происхождения. ...



Все права на текст принадлежат автору: Дэвид Фредерик Эттенборо.
Это короткий фрагмент для ознакомления с книгой.
Жизнь на Земле. Естественная историяДэвид Фредерик Эттенборо