Все права на текст принадлежат автору: Филип Плейт.
Это короткий фрагмент для ознакомления с книгой.
Смерть с небесФилип Плейт

Филип Плейт СМЕРТЬ С НЕБЕС Наука о конце света

© Philip Plait, 2008

This edition published by arrangement with Loretta Barrett Books, Inc and Synopsis Literary Agency

© Nathan Fox, 2019

Nathan Fox retains and reserves all moral, droit and copyrights

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2020

© Электронное издание. ООО «Альпина Диджитал», 2020

* * *

Предисловие

ВСЕЛЕННАЯ ПЫТАЕТСЯ УБИТЬ ТЕБЯ.

Ничего личного. Меня она тоже пытается убить. Она пытается убить всех. И ей даже не нужно сильно стараться.

Вселенная — это невероятно враждебное место для жизни. Практически вся она состоит из вакуума, и одно это уже плохо. Из небольшого количества мест, где хоть что-то есть, большинство слишком горячие, и химические реакции не могут протекать в благоприятном для жизни направлении — молекулы разрывает, прежде чем они успевают сформироваться. Там, где не так жарко, обычно слишком холодно, и реакции протекают очень медленно, так что ничего интересного не происходит.

А в тех немногих местах, где нет вакуума, не очень жарко и не очень холодно, — и, в общем-то, мы знаем только одно такое место, планету Земля, — таятся самые разнообразные опасности. Вулканы извергают мегатонны ядовитых химических веществ в атмосферу, изрыгают лаву на километры вокруг и вызывают обширные землетрясения. Цунами изменяют протяженные участки береговой линии. Ледниковые периоды наступают и отступают, горы появляются откуда ни возьмись и изменяют метеорологические условия в глобальных масштабах, целые континенты соскальзывают в раскаленную мантию Земли.

И все это лишь наши местные проблемы. Земля все-таки находится в ужасно враждебных условиях космоса, и оттуда на нас могут обрушиться всевозможные напасти в прямом смысле слова.

Собственно, об этом-то наша книга.

На право называться самой древней могут претендовать многие профессии, но на самом деле древнейшей из них является астрономия: первым аграрным цивилизациям нужно было знать время посева и время сбора урожая, а подсказки они находили на меняющейся картине небосвода. Появление определенных созвездий в определенное время было ничем не хуже сегодняшних отметок в календаре.

Солнцу и Луне поклонялись. Это поклонение трансформировалось в убеждение, что все боги обитают на небесах. Изучение небес было своего рода религиозным обрядом.

Появилась астрология, пытавшаяся (и непреуспевшая, кстати) увязать жизнь людей с небесами. С изобретением телескопа и затем установки на него фотокамеры выяснилось, что небеса — это не только отражение наших суеверий. Небо оказалось холстом, на котором были написаны прекраснейшие картины, когда-либо виденные человечеством. На его просторах обнаружились пыльные ленты туманностей, раскинувшиеся грандиозные галактики, пестрые, полосатые планеты. Мы увидели, что небеса прекрасны.

Астрономия стала научной дисциплиной, руководствовавшейся принципами физики, математики и химии. Она развилась в отдельное направление и породила многие другие.

На протяжении тысячелетий считалось, что Вселенная создана для людей. Все в ней должно служить нам, и совершенно ясно, что именно так и было предопределено.

Гордыня. Глупая, глупая гордыня.

Потому что Вселенная — это жестокое место. Одни звезды взрываются. Другие, похожие на наше Солнце, могут заканчивать свое существование не таким драматичным образом, но заканчивать все равно. Целые галактики сталкиваются в фейерверках космических масштабов. Астероиды врезаются в планеты — могут ли они упасть на нашу?

Мы запустили в космос телескопы и установили на них камеры, способные регистрировать ультрафиолетовое, рентгеновское и сверхмощное гамма-излучение. Мы увидели Вселенную, которая, похоже, изо всех сил старается уничтожить нас. Взрывающиеся звезды очень опасны. Это источник мощнейшей смертоносной энергии. Черные дыры повсюду, они таятся в галактике, пожирая все, что приблизится к ним. Интенсивные вспышки светового излучения в глубинах Вселенной. До нас доносятся лишь крохи чудовищных, грозных сил, способных испепелить Солнечную систему целиком, попадись она им на пути.

В течение большей части истории человечества Земля считалась центром Вселенной. Однако сейчас наша планета кажется уязвимой и невероятно крошечной — далекая песчинка, затерявшаяся на пугающих просторах Вселенной, которой ужасно много лет.

На самом деле, Вселенной совсем нет до нас дела, живы мы или умерли. Если бы волшебным образом можно было перенести человека в любое произвольно взятое место в космосе, шансы на то, что в течение нескольких секунд он погибнет, равнялись бы 99,999999999999999 %. И это в лучшем случае.

Но, несмотря на все это (и кое-что другое, о чем еще не было сказано), мы существуем. Миллиарды лет, бессчетное число витков вокруг Солнца, в перекрестии дюжин космических орудий… наша планета не сдается. Жизнь не просто продолжается, но и процветает. Конечно, случались и многочисленные провалы, но жизнь идет своим чередом. Да, мы маленькие, уязвимые и слабые, но все-таки мы пока держимся.

Разумеется, мы еще не видели всего, что Вселенная готова обрушить на нас. Один-единственный астероид без всяких усилий может уничтожить половину человечества. Вспышка на Солнце способна смести всю нашу экономику за секунды. А вспышка гамма-излучения поблизости… да тоже очень плохо. Очень плохо.

Я люблю астрономию. Я посвятил ей всю свою жизнь, я рассказываю о ней, я пишу о ней. Астрономия удивительна, она прекрасна, она открывает научную перспективу, в ней есть секретные ответы на столь многие из наших сложных вопросов.

И у меня нет никаких сомнений в том, что астрономия может убить нас. Нет, не так. Я хочу сказать, что астрономические события могут убить нас. В некоторых случаях наше знание астрономии позволит фактически спасти нас. В других — оно дает нам информацию о том, что может убить нас, хотя, к сожалению, и не предоставляет никаких идей о том, как можно этому воспрепятствовать.

А во многих случаях мы и так ничего не смогли бы сделать.

В этой книге я пишу о таких событиях. Один упавший астероид убил динозавров, а где-то уже летит другой, предначертанный для нас. Кажется, что с Солнцем ничего не происходит, но оно способно причинить серьезный вред. Сверхновые вызывают разрушения грандиозных масштабов. Мы рассмотрим эти сценарии и многое другое. Мы представим, что бы произошло, если бы нас решила навестить черная дыра, и что мы можем сделать, чтобы пережить ожидаемую и неизбежную смерть Солнца через 6 млрд лет.

Мы даже будем наблюдать «из первого ряда» старение Вселенной, которое продлится бессчетное число лет, и увидим, что произойдет в конце времен.

Разумеется, на эти темы уже немало написано. Об этих событиях снято много захватывающих документальных телевизионных фильмов. Большинство из них не совсем точно отражают реальность — разрушительные последствия либо преувеличиваются, либо недооцениваются. Создатели этих фильмов концентрируются на несущественных аспектах и упускают из виду важные. Практически никогда в них не говорится о реальной вероятности описываемого события.

Последний момент очень важен. Я пишу о космических катастрофах, как реальных, так и воображаемых, уже несколько лет, и многих они по-настоящему пугают. Каждый раз, когда мимо Земли должен пролететь астероид, эти люди представляют себе апокалиптический сценарий, который подпитывают журналисты, расписывающие опасность и не упоминающие о том, что шанс на столкновение меньше шанса выиграть в самую обычную лотерею. Я потратил слишком много времени, стараясь развеять людские страхи, как рациональные, так и иррациональные.

В своей книге я не буду ничего утаивать. Реальные последствия появления источника гамма-излучения поблизости от Земли затмевают самые страшные представления религиозных фундаменталистов об Армагеддоне, превращая их в унылую историю. Я расскажу, не упуская никаких подробностей, о том, как у Земли сорвет атмосферу, океаны закипят, и все на планете, до основания земной коры, станет бесплодным.

Но, повествуя об этом, я буду напоминать вам, что рядом с нами нет звезд, от которых можно ожидать такую вспышку; а если бы такие звезды и были, шансы на то, что в ближайшее время они взорвутся, ничтожны; а если бы они и взорвались, шансы на то, что излучение будет направлено в нашу сторону, еще ничтожнее.

Но размышлять о том «а что, если…?» все равно весьма захватывающе.

Читая эту книгу, вы, возможно, будете ощущать себя как на сеансе в кинотеатре, где показывают фильм ужасов, — вам интересно, вас пронимает дрожь и, может быть, вам даже жутко. На самых страшных местах вам, вероятно, даже захочется отвернуться, или спрятать глаза, или вы рассыплете попкорн, но потом я обязательно приведу реальные факты, чтобы немного вас успокоить.

Разумеется (в этом месте автор недобро похмыкивает), между фильмом и реальностью большая разница — фильм рано или поздно заканчивается, вы выходите из кинотеатра и смеетесь над своими страхами.

Жизнь другая. В жизни существуют опасности, и от них невозможно отвести глаза. Но, читая эту книгу (надеюсь, с широко открытыми глазами), вы узнаете, что именно влекут за собой опасности и, важнее всего, чего не влекут. Какой ужастик по-прежнему страшит после того, как в зале зажегся свет?

И вы не должны никогда забывать о том, что мы все еще существуем. Вселенная — опасное место, но, я повторюсь, мы продержались до сегодняшнего дня. Значит, у нас есть все шансы продержаться еще немного.

Или нет. Врать не буду. Мы даже не в состоянии осознать масштабы Вселенной и те грозные силы, которыми она обладает. Потому что все события, описанные здесь, — это не вопрос «а что, если», а вопрос «когда».

Глава 1. В прицеле Земля: столкновения с астероидами и кометами

КАК ОБЫЧНО, БУДИЛЬНИК ПРОЗВЕНЕЛ В 6:52 УТРА. В полусне Марк прихлопнул его и поплелся в ванную. Плеснул воды на лицо, чтобы поскорее проснуться, и принялся чистить зубы.

Разгорающийся день уже был ясным и теплым. Чистя зубы, Марк выглянул в окно ванной, чтобы насладиться видом — зеленью деревьев, буйством цветов. Солнце медленно поднималось, и деревья отбрасывали длинные тени.

Закончив чистить зубы, Марк обратил внимание на необычную тишину. «Странно, — подумал он, — почему не слышно птиц?» Уголком глаза он уловил движение. Может быть, их распугал какой-то зверек на дворе…

Подойдя к окну, он приподнялся на цыпочки, чтобы оглядеть двор. Что за черт? — Все деревья отбрасывали две четкие тени. Забыв об утренних делах, Марк изумленно наблюдал за тем, как одна из теней от каждого дерева бежала вокруг ствола как на солнечных часах в ускоренной съемке. Прижав нос к окну, он посмотрел наверх, напрягая глаза, чтобы разглядеть причину такого странного явления.

Внезапно ему показалось, будто из-под карниза само Солнце мчится по небу. Марк подождал, пока ослепленные глаза не привыкли к свету, но по-прежнему не мог понять, что это такое. По небу летел ярчайший белый диск, быстрее, чем любой самолет. Может быть, это метеор?

Марк наблюдал за тем, как он медленно опустился за горизонт. Затем — не успел он и глазом моргнуть, в полной тишине — вспышка, залившая все вокруг таким ярким светом, что у него заслезились глаза. Он болезненно сощурился. Когда зрение вернулось, небольшой яркий диск исчез, но от него остался светящийся след гораздо больших размеров, веером расходящийся от горизонта. Жар от объекта был осязаем даже через стекло. Как будто стоишь у камина. Наблюдая за расплывающимся в небе пятном, Марк заметил кое-что еще более странное: что-то было не так с верхушками деревьев. Они дымятся, что ли?..

Жара стала нестерпимой. Марк начал понимать, что дела плохи. Пока он стоял и соображал, что делать, внезапный резкий толчок сотряс дом, сбив Марка с ног. Все быстро стихло, и, в ошеломлении поднимаясь на ноги, он ощутил, что жар усилился — это раскаленный воздух затекал в дом через разбившееся окно ванной. Он решил, что худшее уже позади, но даже не подозревал о том, что со скоростью свыше 1100 км/ч в его сторону несется, прорываясь сквозь атмосферу, неистовая волна чистого звука.

Слишком поздно он заметил фронт ударной волны, надвигающийся на него как цунами высотой в 16 км. На горящий дом обрушился мощный удар, обратив его вместе с Марком в пыль. Время принимать решения истекло.

Волна звука смела все на своем пути. Пламя от жара, порожденного взрывом, еще секунду назад полыхающее на деревьях, сначала было сдуто, а затем деревья разлетелись на миллионы щепок. Расширяющееся кольцо давления, уже десятки километров в диаметре, не останавливаясь, с ревом промчалось по тому месту, где раньше стоял дом Марка, жадно пожирая строения, деревья, автомобили, людей.

Прежде чем затухнуть, ударная волна дважды обошла вокруг Земли. Сейсмографы во всем мире зарегистрировали это событие как землетрясение максимальной магнитуды, но долгое время никому не было дела до научных данных. Все просто старались выжить.

Метеоры, метеороиды, и метеориты — ну надо же!

Земля — объект в космическом тире, и мы у Вселенной на прицеле.

Только подумайте — каждый божий день на Землю обрушивается от 20 до 40 тонн метеоров. За год легко набирается столько космического мусора, что им можно заполнить шестиэтажное офисное здание.

Кажется, что это ужасно много, но в общем-то, чепуха по сравнению с размерами Земли, которая в квинтиллион — миллион миллионов миллионов — раз больше. Но космос кишит обломками, и Земля постоянно прокладывает сквозь них путь.

Большая часть — это мусор, крошечные камешки, легко сгорающие в нашей атмосфере. Если выйти на улицу темной, ясной ночью, можно заметить «падающие звезды», которые астрономы называют метеорами. Возможно, вы удивитесь, но даже самые яркие из тех, что вам доведется увидеть, вызваны крупинками, называемыми метеороидами, которые не больше кристаллика соли. Объект размером с горошину стал бы потрясающе ярким метеором — однажды я видел такой. Он был таким ярким, что озарил все небо, а в моих глазах даже появилось остаточное изображение. Я замер на две-три секунды, не в силах пошевелиться, пока он мчался по небу, но был не менее поражен, когда позднее рассчитал, что тот камешек был, вероятно, размером не больше грейпфрута.

Как что-то настолько маленькое становится таким ярким? Здесь необходимо учесть два фактора. Первый вам может быть знаком: при сжатии воздух нагревается. Вспомните, каким горячим становится велосипедный насос после того, как вы накачали колеса, — сжимаемый внутри насоса воздух нагревается и передает тепло металлу. Вы можете даже обжечься, используя насос, если не будете осмотрительны. Чем сильнее сжимается газ, тем сильнее он разогревается. Второй фактор — это фантастическая скорость, с которой движутся метеороиды. Большинство прилетающих к нам имеют скорость от 15 км/с до 35 км/с, но некоторые мчатся на скорости до 95 км/с! Это гораздо, гораздо быстрее, чем выпущенная из винтовки пуля.

Когда объект, движущийся так быстро, входит в нашу атмосферу, его скорость преобразуется в энергию, которая, в свою очередь, передается окружающему объект воздуху. Проносясь сквозь верхние слои атмосферы, метеороид неистово врезается в воздух — камень, летящий со скоростью 50 Махов, будет очень сильно его сжимать. Воздух сдавливается так быстро и с таким высоким давлением, что температура его повышается до нескольких тысяч градусов, и он начинает светиться.

Легко представить, что весь этот горячий воздух похож на доменную печь. Метеороид, движущийся всего в нескольких сантиметрах за таким спрессованным воздухом, ощущает этот жар. Долго в таких условиях не продержаться, и, если камешек маленький, он обычно сгорает всего за несколько секунд. Яркая вспышка, светящийся след, остающийся пару мгновений на небе, и вот камешка уже нет, а его ничтожно малая масса прибавилась к массе Земли.

Пораженному наблюдателю кажется, что метеор промчался прямо у него над головой, но на самом деле все происходит на высоте не менее 80 км. Воздух на такой высоте очень разреженный, но тем не менее достаточно плотный, чтобы тормозить маленькие твердые частицы. Но что, если такая частица будет больше горошины, виноградины или арбуза? Что, если она будет размером, скажем, с диван, автомобиль или автобус?

С большими объектами дела обстоят совсем иначе. Если «камешек» насчитывает несколько метров в поперечнике, то вместо того, чтобы просто сгореть, такая глыба космического мусора сжимается давлением воздуха как в тисках — это давление может достигать 18 т/м2. От такого давления входящий в атмосферу объект может постепенно сплющиваться. Неслучайно этот процесс называется блинообразованием. Но камень способен выдержать только определенное давление, после чего он расколется на фрагменты. И через несколько секунд вместо одной большой глыбы на нас уже летят сотни или тысячи маленьких камней, по-прежнему на скорости нескольких километров в секунду, и все передают свою энергию окружающему воздуху. Они продолжают сжиматься, раскалываться, разогреваться и так далее… и через долю секунды мы имеем целую кучу каменных обломков, выделяющих массу тепла.

Согласно определению, это взрыв.

Итак, метеороиды средних размеров взрываются в атмосфере. Повторюсь, обычно это происходит на довольно большой высоте, которая зависит от того, насколько метеороид прочный. Те, что состоят из металлов, способны выдерживать более сильные воздействия и проникать глубже в атмосферу, но, возможно, все равно взорвутся далеко от поверхности Земли. Энергия, выделяющаяся в этих процессах, впечатляет: камень диаметром всего 1 м может взорваться с мощностью, эквивалентной сотням тонн тринитротолуола. Собственно, из отчетов военных следует, что подобные взрывы попадающих в атмосферу крупных каменных тел они регистрируют в среднем один раз в месяц!

Если метеороиды взрываются в атмосфере на столь большой высоте, вы, наверное, думаете, что объекты таких размеров не несут для нас угрозы?

Ну, не совсем так. При определенных условиях летящий к земле камень, возможно, расколется, но некоторые куски могут пережить полет. Если до взрыва основная масса достаточно замедлится, тогда меньшие фрагменты могут замедлиться еще больше, не рассыпавшись в прах. Эти фрагменты могут добраться до поверхности. Металлические метеороиды имеют еще более прочное строение и также могут уцелеть, долетев прямиком до земли. Если им это удается и они врезаются в землю, их называют метеоритами[1].

Скорость удара о землю небольших метеороидов, уцелевших в атмосфере, обычно не слишком велика. Фактически их скорость полностью гасится воздухом, и они падают с так называемой конечной скоростью. Это как если бы их сбросили с высокого здания или воздушного шара, так что скорость их удара составляет, может быть, 160 км/ч или 300 км/ч. Да, страшно, но не очень.

Тем не менее желания оказаться на пути летящего так быстро камня не возникает. Сравните: скорость таких камней при ударе о землю выше, чем даже скорость подачи профессионального бейсболиста. В ноябре 1954 г. женщина по имени Энн Ходжес из Силакоги в Алабаме пострадала от удара метеорита. Он был довольно маленьким, размером с кирпич, и массой чуть больше 3,5 кг. Пробив крышу дома, он отскочил от деревянного корпуса радиоприемника и врезался в прилегшую вздремнуть на диван женщину, довольно бесцеремонно нарушив ее сон. Удар пришелся на руку и бок женщины. Она не умерла, но ее синяки были одними из самых ужасных в истории медицины.

Вполне возможно, это был самый ранний задокументированный случай ущерба собственности человека от падения метеорита. Но не последний. С появлением видеокамеры все больше и больше потрясающих метеоров стали неизбежно попадать в объектив.

2 октября 1992 г. метеороид размером со школьный автобус вошел в атмосферу Земли. Летя на северо-восток над территорией США, он превратился в огромный огненный шар, и его наблюдали тысячи людей — по счастливому совпадению это случилось в пятницу вечером в футбольный сезон, поэтому у многих были включены видеокамеры, и мы имеем прекрасные записи метеора. В стремительном полете камень раскололся, и один из фрагментов размером примерно с футбольный мяч упал на багажник автомобиля одной девушки в Пикскилле, штат Нью-Йорк, оставив в нем дыру, которая, и это неудивительно, выглядела, как если бы на машину с большой высоты упал камень. Можете представить, как сложно было владелице получить страховку за повреждение.

Несмотря на эти и другие истории, в конечном счете поверхность Земли большая, а метеориты маленькие. Шансы на то, что один из них попадет в кого-то, очень невелики, а шансы, что он кого-то убьет, еще меньше.

Все-таки большинство метеоритов маленькие. Но не все.


Поверхностный удар

30 июня 1908 г. в одном и том же месте в одно и то же время оказались Земля и довольно небольшой и непрочный камень.

Вероятно, этот камень имел 50 м или около того в поперечнике. Его орбита пересекала орбиту Земли, и со временем они неизбежно должны были встретиться в точке пересечения.

Он появился над Сибирью, в удаленном регионе около реки Подкаменная Тунгуска. В тот день он вошел в атмосферу Земли над Россией, двигаясь на северо-запад. Метеороид погружался все глубже в воздух, испытывая огромные нагрузки от увеличивающегося давления. Он раскололся на части, и каждая часть раскололась на части, и этот каскад разрушений передал огромную энергию окружающему воздуху. Объект взорвался, выделив от 3 до 20 мегатонн энергии: это «от 3 до 20 мегатонн» в тротиловом эквиваленте в сотни раз больше, чем бомба, сброшенная на Хиросиму 37 лет спустя.

Вспышку увидели сотни свидетелей (в Советском Союзе даже выпустили марку с ее изображением), а взрыв зарегистрировали сейсмографы, отслеживающие землетрясения. Людей сбивало с ног на расстоянии сотен километров.

Несмотря на то что это было поразительное событие и ажиотаж, который оно вызвало, на подготовку научной экспедиции ушли годы. Это невероятно труднодоступные места: зимой там, прямо скажем, практически не выжить (это же Сибирь), а летом район Тунгуски превращается в болото с полчищами комаров. В конце концов экспедиция добралась до места, и утомленным путникам открылась невиданная картина.

Приближаясь к зоне взрыва, участники экспедиции были поражены, увидев на сотнях квадратных километров деревья, разбросанные как зубочистки. Более того, стволы лежали параллельно друг другу. Идя по следу, ученые пришли на место, где все деревья были повалены радиально, как спицы велосипедного колеса. Еще интересней был тот факт, что в эпицентре взрыва деревья по-прежнему стояли, хотя и лишились всех ветвей и листьев. Сложно представить, что почувствовали люди, увидев такое жуткое зрелище.

Ударный кратер так никогда и не обнаружили, не нашли (пока) и каких-либо фрагментов, однозначно указывающих на метеорит. Он взорвался в нескольких километрах над поверхностью Земли и полностью испарился. А деревья повалило взрывной волной. Деревья в центре по-прежнему стояли, потому что взрывная волна обрушилась на них вертикально; чтобы повалить дерево, сила должна быть приложена сбоку. Воздушные взрывы при испытаниях ядерного оружия в 1950-х гг. и 1960-х гг. давали такую же картину.

Хотя из-за удаленности взрыва его было сложно изучать, это также означало, что погибло всего несколько человек. Если бы взрыв произошел над Москвой или Лондоном, в течение нескольких минут погибли бы миллионы, так что, несомненно, это очень серьезная угроза. Тем не менее непосредственное воздействие взрыва ограничилось только той местностью. Вероятно, на расстоянии нескольких десятков километров от него никто не пострадал.

Но ведь не все падающие объекты имеют всего 50 м в поперечнике… и не все удары локальны.

Докучливый астероид

Тогда — 65 млн лет назад — день у динозавров совсем не задался.

Вообще-то недавние находки свидетельствуют о том, что у них не задалась пара миллионов лет. Имеются свидетельства о том, что климат Земли изменялся и многие виды уже находились в упадке. Существует множество доказательств того, что по геологическим меркам огромное число видов действительно вымерло практически в одночасье. Сейчас уже считается научно доказанным, что причиной этого стало столкновение с астероидом диаметром полтора километра, и при таких размерах термин «метеороид» будет совершенно неподходящим.

Несомненно, судя по результатам, он должен был быть большим. Разум отказывается представить опустошительные последствия, когда скала размером больше Эвереста промчалась сквозь атмосферу и ударилась о землю на скорости 15 км/с. Только представьте: когда астероид коснулся земли, его противоположная сторона еще не погрузилась в нижние слои атмосферы.

Точное значение энергии удара определить сложно, но она должна была составлять сотни миллионов мегатонн — это гораздо, гораздо больше, чем при взрыве самой большой атомной бомбы в истории. По сути, даже если взорвать все существующее на Земле ядерное оружие одновременно, детонация от удара убийцы динозавров была бы в миллион раз мощнее… и вся сконцентрирована в одной точке.

У динозавров выдался очень, очень плохой день.

Массивный удар запустил цепочку жутких событий, каждое из которых привело к разрушениям невообразимых масштабов.

Стремительно несущийся к земле астероид должен был породить массивную ударную волну, раскаляющую атмосферу на много километров вокруг. Яркий, как Солнце, он поджигал все, над чем пролетал, еще до удара о землю. А если чему-то и повезло пережить тот страшный жар, оно ощутило бы на себе силу гигантской ударной волны от астероида, прорывающегося со сверхзвуковой скоростью сквозь воздух.



Из-за больших размеров астероид едва ли замедлил свой полет или потерял какую-либо массу перед ударом о землю. Сейчас ученым известно, что место падения находится около полуострова Юкатан в Мексике. Он упал в океан, что неудивительно, так как вода покрывает 71 % поверхности Земли. Огромная часть Мексиканского залива, должно быть, мгновенно испарилась, когда при ударе гигантская энергия полета астероида преобразовалась в тепло. Залив относительно неглубокий, поэтому вода не сильно замедлила бы астероид перед ударом о континентальный шельф. Только скальные породы смогли прервать этот полет, и оставшаяся энергия мгновенно преобразовалась в тепло.

В этот момент то, что еще мгновение назад казалось жутким сценарием, превращается в совершеннейший апокалипсис, потому что одновременно происходит несколько событий. При ударе о земную кору все те миллионы мегатонн энергии высвободились в виде взрыва — расплавленные скальные породы и превратившаяся в пар морская вода разлетелись во все стороны. Шлейф пара и скальных частиц взмыл в небо на несколько километров, яркий и раскаленный, как Солнце. Само столкновение породило огромную подземную ударную волну, поражающую все вокруг на сотни километров от места падения, по сравнению с которой меркнут любые природные землетрясения.

За сотрясением земли последовала воздушная ударная волна, звуковой удар эпических масштабов. Все живое в радиусе 1000 км, не погибшее при первичном ударе, наверняка оглохло от этого раската.

Но те, кто находился рядом с Мексиканским заливом, в любом случае долго не протянули бы. Упав в воду, астероид вытеснил огромный объем океана как за счет ударной волны, так и за счет простого испарения от тепла. В результате возникло цунами, но цунами грандиозных масштабов.

В декабре 2004 г. землетрясение вызвало цунами высотой в несколько метров, двигавшееся не быстрей автомобиля, но приведшее к гибели четверти миллиона человек. Цунами от удара астероида было высотой в сотни метров и двигалось со скоростью почти 1000 км/ч.

Через несколько минут ревущая гора из миллиардов тонн морской воды обрушилась на побережье Техаса, оставляя за собой безжизненное пространство. Цунами прошло на несколько километров вглубь материка, убивая все живое на своем пути, с неистовством, с которым не сравнятся никакие опустошения от торнадо, урагана или землетрясения.

Но на этом апокалипсис не закончился. При ударе астероид пробил дыру в земной коре. От мощного столкновения расплавленные скальные породы взлетели на воздух со скоростью несколько километров в секунду. На таких скоростях каменные обломки взмывали в небо, выходя из атмосферы по баллистическим траекториям, как межконтинентальные ракеты. Возвращаясь на землю, эти выброшенные камни раскалялись и загорались, повторяя исходное событие в меньших масштабах, но миллионы раз. Пылающие скальные породы обрушивались ливнем с неба на тысячи километров вокруг места падения, вызывая во всем мире лесные пожары, которые разгорались все больше, окутывая Землю плотным облаком черного дыма.

По сути, огнем была охвачена вся планета.

Тем временем в эпицентре само место падения представляло невиданную на Земле картину. В земной коре образовался кратер диаметром 300 км и глубиной 30 км, а температура в нем достигала более 3000 °C. Устремляющаяся в него вода мгновенно испарялась, приводя к еще большим разрушениям, если таковые вообще были возможны.

На Земле не осталось непострадавших уголков. Повсюду полыхали пожары. Огнем был охвачен весь мир, сквозь темнеющую атмосферу проникало очень мало солнечного света. Со временем Земля остыла так сильно, что наступил ледниковый период, во время которого вымерли даже невероятно стойкие растения и животные, пережившие исходную атаку.

Совершенно случайно астероид попал на Земле в место, богатое известняком и другими минералами. Ударная волна от столкновения (а также от повторного входа в атмосферу выброшенных взрывом камней) привела к образованию из этих веществ нитратов, которые затем в воздухе преобразовались в азотную кислоту, дождем пролившуюся на планетe. Кроме того, при ударе из самого астероида высвободились хлор и другие химические вещества; катапультированные в верхние слои атмосферы, они смогли разрушить озоновый слой. Это уничтожило не только растительную жизнь, но и водные организмы. Пищевая цепочка на всей планете прервалась на самом фундаментальном уровне, и, когда пламя пожаров наконец утихло, до 75 % всей жизни на Земле было уничтожено.

Через некоторое время кратер остыл, пожары затухли, и земные природные циклы скрыли свидетельства катастрофы. Оставшиеся на Земле живые существа долгое время влачили суровое существование, но такое масштабное опустошение создало много свободных экологических ниш. Как всегда бывает, жизнь нашла свои пути, и Земля снова оказалась заселена.

Перенесемся вперед на 65 млн лет. Геологи, ведущие раскопки в слоях каменных пород, обнаружили значительную разницу в составе и цвете двух соседних пластов. Нижний пласт представлял собой скальные породы и окаменелости мелового периода, а верхний пласт — третичного. Это поразительное нарушение непрерывности, называемое границей К/Т — критский (меловой)/третичный, — оставалось загадкой в течение десятилетий, и не только среди ученых: поскольку оно обозначало конец эпохи динозавров, то привлекло внимание широкой публики.

После многолетних исследований появилось неоспоримое доказательство: в скальных породах на границе К/Т был обнаружен слой, содержащий иридий — это редко встречающийся на Земле элемент, но обычный для астероидов. Кроме того, во многих местах на Земле прямо над границей К/Т имеется слой сажи, вероятно свидетельствующий о пожарах в мировых масштабах. Оба факта прямо указывали на падение астероида. Чтобы закрепить успех, оставалось найти кратер.

В конечном счете он также был обнаружен, причем центр его находился прямо у оконечности полуострова Юкатан. Вы, возможно, думаете, что нет ничего проще, чем найти огромный кратер, но на деле это сложно. Многие приметы кратера были стерты миллионами лет эрозии. Плюс сам кратер, называемый Чиксулуб, настолько большой, что его можно увидеть только из космоса. Поразительно — вы можете стоять в самом центре и даже не подозревать об этом. Его так сложно измерить, что ученые до сих пор спорят о размерах и глубине.

Несмотря на разрушения мировых масштабов, вымирание бессчетного количества видов (включая, разумеется, динозавров, которые до той поры жили не тужили в течение поразительно долгого периода — 200 млн лет) и воздействие на окружающую среду, последствия которого ощущались столетиями, стоило бы отметить, что астрономы отнесли бы виновника — астероид около 10 км в поперечнике — к категории «маленьких».

Существуют астероиды гораздо, гораздо крупнее. Большинство из них никогда не приблизятся к Земле. Однако есть несколько астероидов примерно таких же размеров, которые не только приближаются к нам, но и имеют орбиты, пересекающие орбиту Земли. В их отношении столкновение с Землей — это не вопрос «а что, если». Это вопрос «когда».

У динозавров выдался очень плохой день, но, возможно, когда-то наступит и наш день.

Свалка космического оружия

Откуда же прилетают все эти камни?

Основная масса астероидов в Солнечной системе обращаются вокруг Солнца в так называемом поясе астероидов, или главном поясе, между орбитами Марса и Юпитера. На нескольких квинтиллионах квадратных километров пространства в виде сплющенного пончика, которое они занимают, их могут быть миллиарды. Большинство из них крошечные, размером с пылинку или горошину. Диаметр самого крупного и первого из открытых, Цереры, составляет почти 1000 км. 1 января 1801 г., в первый день нового столетия[2], итальянский астроном Джузеппе Пиацци обнаружил его, изучая небеса. Зная о предположении астрономов, что в промежутке между Марсом и Юпитером может скрываться маленькая планета, и, видя, что этот объект перемещается по небу от ночи к ночи, Пиацци решил, что наконец нашел ее. Однако через несколько лет в той же области были найдены еще несколько объектов. Всю группу назвали астероидами, что означало «подобные звездам»; они были слишком маленькими, находились слишком далеко и в телескопах того времени выглядели всего лишь светящимися точками.

В течение длительного времени происхождение астероидов оставалось загадкой. Сначала считали, что это обломки планеты, существовавшей между Марсом и Юпитером, которая по каким-то причинам была разрушена. Сегодня масса накопленных фактов свидетельствует о том, что астероиды — это осколки, сохранившиеся со времен формирования Солнечной системы. Из-за мощного гравитационного воздействия Юпитера эти фрагменты так и не смогли собраться в большую планету; силы тяготения крупнейшей планеты Солнечной системы разгоняли астероиды, увеличивая скорость их столкновений. Вместо того чтобы слипаться при столкновениях на низких скоростях с образованием более крупных объектов, они ударялись с высокими скоростями и рассеивались.

Ныне известны сотни тысяч астероидов. Многие были открыты благодаря твердой решимости: ночь за ночью астрономы припадали к окулярам телескопов, наблюдая за небом. Сегодня существуют автоматические телескопы — своего рода роботы, — которые сканируют небо по составленным программам. Затем значительные объемы накопленных данных анализирует компьютер в поисках движущихся объектов. В наши дни, вообще-то, человеку относительно редко выпадает шанс найти астероид.

Большинство известных астероидов вращаются вокруг Солнца в главном поясе, но не все. Со временем под воздействием разнообразных процессов, гравитационных и иных, форма орбиты некоторых астероидов из главного пояса может измениться. Орбиты некоторых могут становиться более вытянутыми, так что они будут сильнее приближаться и удаляться по сравнению с другими астероидами из главного пояса. Одни пересекают орбиту Марса, а другие — орбиту Земли.

Именно об этих других нам нужно беспокоиться.

Поиск объектов, пересекающих орбиту Земли (они называются околоземными объектами, а те, что представляют опасность, обозначаются как потенциально опасные объекты), ведется совместно во всем мире, однако по-прежнему в небольших масштабах — не более 20 астрономов заняты им постоянно, причем основные работы ведутся в США. Даже если бы работало больше наблюдателей, применяя более совершенное оборудование, астероиды малых размеров, диаметром около 1 м, все равно представляют опасность: их очень сложно заметить заблаговременно. На деле многие астероиды таких размеров обнаруживают лишь после того, как они пролетели мимо Земли. Вполне возможно, что первое предупреждение о небольшом столкновении масштабов Тунгусского метеорита мы можем получить в виде яркой вспышки в небе.

Поэтому астрономы продолжают поиски и надеются выявить следующего «нарушителя» задолго до встречи с ним, чтобы у нас было время что-то предпринять. Была поставлена цель — к концу 2008 г. найти 90 % всех астероидов диаметром свыше 1000 м, приближающихся к Земле. Таких объектов тысячи и тысячи, поэтому у астрономов полно работы. Несмотря на то что мы не уложились в официальные сроки, важно отметить, что с точки зрения статистики большое число астероидов с изначально неопределенной вероятностью столкновения было переведено в разряд «не представляющих опасности».

Двести лет мы знаем про астероиды и только сейчас осознали опасность, которую они представляют. У динозавров совсем не было шансов.

Армагеддон наших дней

Разумеется, большая разница между нами и динозаврами состоит в том, что у них не было космической программы.

Вы сто раз видели это в кино: обнаруживается астероид диаметром в несколько километров с орбитой, ведущей его прямиком к столкновению с Землей. Если ничего не предпринять, он сотрет нас с лица планеты. Берем команду бравых героев астронавтов, или нефтяников с нефтяной платформы, или военных. Они героически отправляются в космос, героически противостоят чудовищному астероиду и героически разносят его на клочки, которые без вреда проливаются звездным дождем на Землю на глазах зевак.

Ну да, выглядит героически. Есть только одна проблема: это не сработает.

Вообще-то, с этим сценарием много проблем. Например, нет никакой гарантии, что, взорвав астероид ядерным оружием, мы уничтожим его. Множество астероидов практически полностью состоят из твердого железа, поэтому ядерная бомба, возможно, лишь чуть-чуть нагреет такой астероид.

Даже если астероид состоит из скальных пород, нет никаких гарантий того, что ядерный взрыв рассеет его на мелкие кусочки. Во-первых, если он очень большой, ядерный заряд может не так уж сильно разрушить его. Но это также зависит от степени плотности астероида.

Было обнаружено, что некоторые астероиды имеют очень малую плотность, и сначала это ставило ученых в тупик. Плотность скальных пород составляет примерно 2–3 г/см3 (приблизительно в два-три раза больше плотности воды). Но некоторые астероиды имеют меньшую плотность. Например, астероид (253) Матильда, обращающийся вокруг Солнца между Марсом и Юпитером, имеет плотность примерно 1,3 г/см3. Он, должно быть, похож на пенопласт. Как такое возможно?

Когда у нас наконец появилась возможность наблюдать астероиды вблизи с помощью космических зондов, оказалось, что они сильно изрыты кратерами. Ясно, что астероиды атакуют своих собратьев: они ударяются друг о друга, оставляя гигантские рытвины на поверхности. Достаточно сильный удар может привести к тому, что астероид разлетится на куски. Но, если скорость удара будет чуть-чуть ниже критической, астероид не разорвет: он расколется от удара, однако фрагменты останутся на месте, как случается при ударе молотком по хрустальному яйцу. Собственные силы тяготения не дадут осколкам астероида разлететься, но он покроется трещинами и расселинами. По сути, это будет куча камней, подвешенная в пространстве.

Что получится, если попытаться взорвать что-то подобное ядерной бомбой?

Эксперт по астероидам, Дэн Дарда из Юго-западного исследовательского института в Боулдере, Колорадо, захотел это выяснить. Он обнаружил, что научные публикации об астероидах содержат не так уж много информации об экспериментах с веществом настоящих астероидов, поэтому решил устранить этот пробел. Он раздобыл пару метеоритов, осколков астероидов. Один был из плотных, твердых скальных пород. Второй был более пористым, и больше похож на астероид (253) Матильда, чем на кусок, скажем, кварца.

Свои образцы он принес в Исследовательский центр NASA им. Эймса в Калифорнии, который гордится своей необычной пушкой: с помощью сжатого воздуха она выстреливает снаряды со скоростью несколько километров в секунду.

Дарда поместил твердый образец в перекрестье прицела пушки и выстрелил в него металлическим шариком со скоростью 5 км/с. Как и ожидалось, метеорит взорвался, разлетевшись на сотни фрагментов.

Затем он поместил в перекрестье пористый образец скальной породы. При попадании шарика метеорит поглотил его и не разлетелся на куски.

«Что, если бы подобный объект приближался к Земле и вы старались его остановить?.. Какой был бы результат, если бы мы выстрелили в него неким снарядом на очень большой скорости для того, чтобы попытаться разбить его? Что, если для того, чтобы разбить его, вы бы попытались поместить рядом с ним небольшой ядерный заряд? Произошло бы именно то, что вы обычно ожидаете в случае твердого скального объекта?» — спрашивает Дарда.

«Вы берете кирпич, берете молоток, ударяете по кирпичу, и он разлетается на куски… вот что вы представляете себе, рассуждая о разрушении астероида.

Но если вы берете мешок с песком и бьете по нему тем же молотком, ничего не происходит. Вы просто слышите глухой звук удара, вот и все…»

Плохие новости для нас. Куча обломков прекрасно поглощает разрушительные удары, поэтому ядерный снаряд не уничтожит астероид. Если мы заметим, что на нас движется такой объект, мы можем бомбить его сколько угодно, а он будет лишь смеяться над нами, пока не врежется в Землю.

На самом деле, многие ученые переосмысливают идею уничтожения астероида ядерным снарядом. Даже если это осуществимо, взрыв приближающейся угрозы имеет огромный недостаток — вместо одного большого опасного объекта в результате образуются тысячи небольших потенциально опасных фрагментов. Это может показаться лучше, чем альтернатива (столкновение с одним гигантским астероидом), но даже камень диаметром 100 м может легко уничтожить большой город. Десять таких одновременных столкновений приведут к катастрофе вне зависимости от точки падения. Да, взрывная сила столкновений будет меньше, но они будут распределены по большей площади, сея разрушения во всем мире, вместо того чтобы быть сосредоточенными в одном месте.

Дарда указывает на еще одну опасность взрыва небольших астероидов. «Если рассмотреть космический состав типового астероида такого размера… в нем достаточно хлора и брома, чтобы уничтожить озоновый слой. Поэтому не важно, упадет ли этот объект в одном месте единой массой, или миллион всех тех мелких фрагментов, образовавшихся после взрыва, все равно обрушится на землю, испаряясь в атмосфере. В любом случае все очень опасные вещества попадут в нашу уязвимую атмосферу».

Тогда, может быть, лучше просто позволить небольшому астероиду упасть на нас, если уж остановить его невозможно?

Разумеется, это не годится, особенно если вы находитесь прямо в центре мишени.

Но, возможно, есть другое решение.

Одно из предложений — не сбрасывать бомбу на астероид, а взорвать ее рядом с ним. Если взорвать бомбу около астероида, скажем, на расстоянии нескольких сотен метров, выделится огромное количество тепла, от которого часть поверхности астероида испарится. Твердые скальные породы или металл превратятся в газ, и это газовое облако мгновенно рассеется, действуя как ракетный двигатель. Оно слегка подтолкнет астероид, сдвигая его.

Ненамного, но в космосе много и не нужно: каждый небольшой толчок делает свое дело. Если взорвать несколько бомб, можно на самом деле сгенерировать достаточную силу, чтобы существенно сместить астероид. Если сдвиг будет достаточным, астероид пролетит на значительном расстоянии от Земли.

А большое преимущество этой технологии в том, что она сработает и для кучи обломков, однако как — мы точно не знаем.

У этого метода есть несколько недостатков. Во-первых, необходимо значительное упреждение. Чем дальше астероид от Земли, тем меньше придется изменять его орбиту, чтобы он не столкнулся с нами. Большинство экспертов считают, что десяти лет будет достаточно, однако им было бы спокойнее иметь 20. Сотня лет вообще было бы идеально. Этот метод лучше сработает на астероидах меньших размеров, потому что их легче сдвигать, но маленькие астероиды более тусклые, соответственно их сложнее обнаружить. Запас времени будет меньше, поэтому ошибки будут недопустимы. Доставить к астероиду одну бомбу сложно; доставить 20 или еще больше — гораздо сложнее.

Другая проблема заключается в том, что практически невозможно предугадать, как взрыв повлияет на орбиту астероида. Его может быть достаточно, чтобы этот камень не попал в нас, или он может перевести его на такую орбиту, что мы столкнемся с ним на следующем витке вокруг Солнца.

Возьмем, например, астероид (99942) Апофис. Это камень диаметром примерно 250 м, пересекающий орбиту Земли, — потенциально опасный объект. При таких размерах и массе его падение вызвало бы значительные разрушения, при этом мощность взрыва составила бы 900 мегатонн (как минимум в десять раз мощнее, чем самый разрушительный ядерный взрыв в истории человечества). Апофис пройдет мимо Земли 13 апреля 2029 г.; в этот раз риска столкновения нет, но он пролетит так близко, что будет ближе к поверхности Земли, чем многие метеоспутники и спутники связи.

Астероид приблизится к нам настолько, что его орбита подвергнется значительному гравитационному воздействию Земли, а насколько она изменится, зависит от того, как близко он пройдет от Земли в 2029 г. Собственно, в космосе есть область, называемая «замочной скважиной», и, если Апофис пройдет сквозь нее, орбита его изменится именно настолько, что при следующем возвращении в 2036 г. он столкнется с Землей.

Эта критическая область не такая уж большая, но, так как мы недостаточно точно знаем траекторию Апофиса, полностью устранить вероятность того, что он пройдет через нее, мы не можем. Эти шансы крайне малы, может быть меньше 1 к 45 000, но изучить этот вопрос стоит.

А что, если Апофис проскользнет прямо в замочную скважину? У нас будет всего семь лет, на то чтобы сдвинуть его для предотвращения столкновения с нами. Лучше с самого начала не допустить его прохождения сквозь замочную скважину. Если мы доберемся до Апофиса ранее 2029 г., нам практически не придется даже толкать его; расчеты показывают, что будет достаточно изменить его скорость всего на несколько тысячных сантиметра в час. Так что можно подумать, что ядерный снаряд в подходящем месте сработает.

К сожалению, нет. Та замочная скважина не единственная: их десятки, тысячи. Первая замочная скважина определяет лишь путь Апофиса при его возвращении через семь лет; другие замочные скважины определяют его положение через 10, 12, 20 лет… вместо спасения, взрыв лишь позволяет нам выиграть немного времени, причем нет никакой гарантии, что мы сможем увести его от какой-нибудь другой замочной скважины или не отколем от него кусок или десять кусков, которые пройдут сквозь другую замочную скважину.

Ключевой вопрос заключается в контроле последующей орбиты, а взрыв ядерного снаряда не настолько деликатный[3]. Нам нужно найти способ поточнее управлять движением астероида.

Толчковая скорость

Вероятно, вы уже сообразили, что, может быть, бомба нам и не нужна. От удара астероида о Землю выделяется энергия, как при взрыве бомбы, так почему бы не попробовать атаковать сам астероид? Если толкнуть его достаточно сильно каким-нибудь снарядом, нам не понадобится ядерная бомба.

У этого метода есть очень большое преимущество: мы уже так делали. 4 июля 2005 г. (в День независимости, что вполне уместно) зонд NASA под названием «Проникающий удар» (Deep Impact) врезался в комету Темпеля-1, и вспышку от столкновения зарегистрировали сотни научных приборов во всем мире. Роль тарана сыграл медный снаряд массой 360 кг, направленный к комете со скоростью более 9 км/с. Мощность взрыва при столкновении составила примерно 5 т в тротиловом эквиваленте. Размеры образовавшегося кратера неизвестны; яркая вспышка и обломки скрыли место удара от камеры космического аппарата.

То, что инженерам удалось направить зонд к объекту, движущемуся со скоростью несколько километров в секунду, — настоящий триумф. Второго шанса у них не было, а пока зонд не приблизился к комете, даже точная форма ее ядра была неизвестна.

С другой стороны, сама комета была достаточно крупной, размером 5×8 км. Если бы это был небольшой астероид, неизвестно, смогли бы инженеры NASA попасть по нему. Тем не менее это была первая попытка, и попытка успешная. Она позволила нам многое узнать, и этот подход можно использовать для удара по потенциально опасному астероиду.

Но необходимо отметить, что у сценария такого удара имеются те же проблемы, что и у взрыва астероида бомбой: астероид может раздробиться на множество более мелких опасных фрагментов, а если он пористый, то попросту поглотит таранящий снаряд. Опять же, мы не можем контролировать изменения орбиты, поэтому, возможно, просто создадим новую опасность столкновения в будущем. Орбита может измениться так, что астероид не попадет в Землю, но насколько именно она изменится, предсказать невозможно, а в этой игре важны даже сантиметры.

Виртуальный буксир

И все же, может быть, есть и другие способы избавиться от потенциального разрушителя планеты. Возможно, вместо того чтобы взрывать астероид, мы можем вежливо убедить его изменить свою траекторию.

Фонд В-612, названный по имени астероида, на котором жил герой Антуана де Сент-Экзюпери Маленький принц, это, за неимением лучшего определения, что-то вроде «мозгового центра Судного дня» с десятками ученых, инженеров и астронавтов, единственная цель которых — найти способ избавить человечество от угрозы катастрофических столкновений. Фонд проводит совещания, публикует исследования, а его члены (например, астронавт из команды «Аполлона-9» Расти Швайкарт) докладывают Конгрессу об астероидах Судного дня.

Их веб-сайт читается как фантастический роман с массой описаний способов не допустить столкновения с астероидом. Но акцент делается на науку. Несмотря на то что некоторые методы сложно реализовать и они определенно находятся на самых ранних стадиях разработки, в других используются уже освоенные технологии.

Например, в одном методе предлагается посадить ракету на астероид, закрепить ее там вверх ногами и запустить двигатели. Постепенно, благодаря тяге двигателей, астероид сместится на новую орбиту и пройдет мимо нас.

Возможно, это самый безопасный метод, и он, несомненно, вполне разумен, но реализовать его на деле было бы очень сложно. Прежде всего, не до конца понятно, как закрепить ракету на поверхности астероида. Что, если поверхность астероида покрыта слоем пыли, или он представляет собой кучу камней, или состоит из металла? Далее, все астероиды вращаются, и это означает, что запускать двигатели ракеты можно будет лишь на короткое время, когда она направлена в нужную сторону. Это означает, что нам потребуется большее упредительное время, а во многих случаях время играет критическую роль. Хуже того, некоторые астероиды крутятся хаотически, и в таких случаях ракета была бы практически бесполезна.

Члены Фонда В-612 постоянно размышляли над этими проблемами… и нашли довольно удивительное решение. Что, если вовсе не сажать ракету?

Да, астероиды маленькие по сравнению с планетами, но все равно имеют определенную массу. А согласно Исааку Ньютону, любой объект, имеющий массу, обладает силами тяготения. Ракета тоже имеет массу и, следовательно, оказывает гравитационное воздействие. Итак, представьте следующее: мы «паркуем» ракету на орбите рядом с астероидом, но без физического контакта между ними. Гравитация астероида будет притягивать ракету, заставляя ее падать в его направлении. Точно так же масса ракеты будет притягивать астероид. Далее, запускаем ракетные двигатели, но по чуть-чуть, чтобы лишь противодействовать ее падению на поверхность. И так будем буксировать астероид. Но, в отличие от баржи или катера-буксира на Земле, которые тянут другие суда за привязанный канат, ракета будет виртуально связана с астероидом гравитацией. Со временем, благодаря гравитационному воздействию, ракета отведет астероид на безопасную орбиту.



Но, разумеется, с этим методом также сопряжены технические трудности; они всегда существуют. Двигатели ракеты нельзя направлять строго вниз, на астероид, потому что они будут отталкивать его, аннулируя эффект тяги. Следовательно, ракету придется наклонить так, чтобы тяга двигателей была направлена под углом от поверхности астероида. Это означает, что нам потребуется пара ракет для того, чтобы они уравновешивали друг друга и не допускали неконтролируемых изменений направления тяги.

В этом методе удивительно то, что в некоторых случаях для тяги не требуется такой уж большой массы. Например, в случае астероида (99942) Апофис буксир с массой всего одна тонна сможет увести астероид от замочной скважины, даже если доберется до него лишь за два года до столкновения. Справедливости ради нужно сказать, что этот метод потребует больше времени на то, чтобы увести астероид с траектории столкновения. В случае Апофиса нам понадобится сдвинуть его лишь так, чтобы он не попал в небольшую область в пространстве, но в случае траектории прямого столкновения нужно, чтобы астероид прошел мимо целой планеты. Это означает, что его орбиту придется смещать на тысячи километров, что, в свою очередь, означает большее упредительное время (или более сильную тягу). Одна идея, выдвинутая Швайкартом, является гибридным решением: использовать «кинетический молоток» (буквально запустить в астероид другим камнем) или ядерный снаряд, чтобы выбить астероид из зоны прямой угрозы, после чего подкорректировать его орбиту гравитационной тягой так, чтобы не получить никаких сюрпризов через несколько витков.

Тем не менее, какими бы многообещающими ни казались эти технологии, нам нужно быть честными перед собой. Сегодня мы не можем реализовать любой из этих методов. Мы уже близко, может, всего в нескольких годах от разработки гравитационной тяги, но даже лоббировать ядерный удар по астероиду чрезвычайно сложно. В отчете NASA, представленном в Конгрессе в 2007 г., говорится, что в настоящее время нашим единственным рабочим вариантом является отправка к астероиду «кинетического молотка».

Но это объясняется существующим уровнем знаний и существующими технологиями. Фонд В-612 надеется со временем испытать технологию, которая предотвратит столкновение с астероидом. Более того, некоторые их идеи, такие как гравитационная тяга, позволяют нам управлять орбитой астероида так, как мы хотим. Возможно, у нас даже получится вывести один из них на безопасную орбиту вокруг Земли. Мы не ощутим его гравитационного воздействия, но он будет достаточно близко, и мы смогли бы наладить на нем добычу полезных ископаемых. Это может казаться притянутым за уши, но, по некоторым оценкам, даже маленький астероид может содержать металлы на триллионы долларов. Это была бы очень соблазнительная цель для промышленности.

Вместо угрозы со стороны астероида мы могли бы сами нацелиться на него.

Комета, была не была

Существует и другая, не столь очевидная проблема, которую мы должны осознавать. Астероиды, как правило, имеют четкие, предсказуемые орбиты. Это мертвые каменные и (или) металлические глыбы, поэтому, понаблюдав за ними в течение некоторого времени, мы можем спрогнозировать их орбиты на десятилетия вперед.

Но астероиды не единственная угроза. Кометы — прекрасные, дивные небесные видения. В отличие от астероидов, кометы похожи на грязные снежки: камни, гравий и пыль вперемешку со льдом, слепляющим их воедино. Когда кометы приближаются к Солнцу, лед тает[4]. Под поверхностью многих комет имеются заполненные льдом полости, и при сублимации льда образующийся газ вырывается из них реактивной струей. Это как если бы у кометы был ракетный двигатель, приводящий ее в движение. Если комета вращается, а большинство из них вращаются, это означает, что газовые струи толкают ее в произвольных направлениях. Поэтому точно спрогнозировать орбиты комет очень сложно, а посадить на них ракету или использовать гравитационную тягу еще сложнее.



Но все еще хуже. Солнечная система похожа на DVD-диск, если смотреть на него с торца: планеты вращаются вокруг Солнца в одной плоскости. Астероиды, как правило, придерживаются той же плоскости. Это означает, что искать их намного легче: нам нужно лишь следить за одними и теми же участками неба.

Но кометы — это темные лошадки. Они не привязаны к плоскости Солнечной системы и могут прилететь буквально отовсюду. Это может существенно ограничить упредительное время, в течение которого нам удалось бы что-то предпринять в отношении приближающейся к Земле кометы-убийцы. Если в случае неминуемого столкновения с астероидом у нас могут быть в запасе десятилетия, в случае кометы у нас может быть всего несколько лет. Даже комета Хейла — Боппа, ярчайшая из когда-либо наблюдаемых, появлением которой наслаждались сотни миллионов человек, была обнаружена всего за два года до прохождения мимо Земли. Если бы она направлялась прямиком к нам, мы совсем ничего не смогли бы предпринять. Ядро, твердая часть кометы Хейла — Боппа, составляло 40 км в поперечнике. Если бы оно врезалось в Землю, это было бы столкновение, по сравнению с которым астероид, убивший динозавров, выглядел бы отсыревшей петардой.

Но даже небольшая комета может оказать катастрофическое, так сказать, воздействие. Предположим, даже если бы ее не приняли за некое тайное нападение, прямым последствием небольшого удара или воздушного взрыва, подобного Тунгусскому, над городом могли бы стать гибель тысяч человек и ущерб на миллиарды долларов. Если бы это случилось над крупным городом или экономическим центром — над Нью-Йорком, Центральной долиной в Калифорнии (где сосредоточена бо́льшая часть производства фруктов и овощей в стране), Токио, — результаты могли бы быть гораздо плачевнее. Хорошая новость в том, что кометы с большим периодом обращения, такие как комета Хейла — Боппа, составляют всего несколько процентов от всех объектов, представляющих опасность, а почти все короткопериодические кометы легко обнаружить.

Разные мелочи

Итак, насколько велика угроза столкновения с астероидами и кометами?

Статистика вам не понравится: шансы на столкновение составляют 100 %. Да, именно так. Со временем, и если мы ничего не предпримем, столкновения неизбежны, и одно из них будет серьезным.

Но ключевые слова в этом предложении — «если мы ничего не предпримем». Суть в том, что мы можем кое-что предпринять. Несмотря на то что описанные здесь методы как будто взяты из фильма, все они возможны. Технически их будет сложно реализовать, да и обойдутся они недешево. Но ставки очень высоки: выживание в глобальном масштабе против полного уничтожения.

Учитывая это, я считаю, что идеи из научной фантастики пора превращать в научный факт.

Глава 2. Солнечный ожог

ЯНВАРЬ, ГЛУХАЯ ЗИМНЯЯ ПОРА В СЕВЕРНОМ ПОЛУШАРИИ ЗЕМЛИ. Короткими днями Солнце неохотно и не всякий раз показывается невысоко над горизонтом, чтобы всего через несколько часов снова скрыться за ним. Кажется, оно едва согревает планету. На холоде люди совсем не беспокоятся о Солнце. Они бы даже и не подумали, что оно сильно влияет на их жизни.

Скоро они поймут, что были не правы.

У Солнца космическое похмелье. За несколько последних лет оно пережило ряд бурных припадков, множество раз извергая в космос грандиозные потоки материи и энергии. По чистой случайности практически все они прошли мимо Земли. Самое плохое, что случилось, — один выброс зацепил Землю, породив прекрасные полярные сияния на обоих полюсах и нарушив некоторые каналы радиосвязи: неприятно, но захватывающее зрелище того стоит.

Сейчас уже все идет на спад, Солнце, похоже, успокаивается. Ученые только начинают думать, что можно вздохнуть с облегчением.

Поэтому выглядывающая из-за края солнечного диска большая группа солнечных пятен застает их врасплох. Солнечные пятна — это темные участки более холодного вещества, вызванные скручиваниями и переплетениями в магнитном поле Солнца, предвестники солнечной активности. Ученые бросаются наблюдать группу солнечных пятен, нацелив на звезду целый парк наземных и орбитальных телескопов. Глазам их открывается неприглядное зрелище: поверхность Солнца искажена, исковеркана, затемнена, изуродована пятнами. Эта группа чудовищных размеров, такая же, как крупнейшие из групп, наблюдавшихся в 2003 г. и до сих пор обсуждаемых учеными, или даже крупнее.

Больше недели астрономы с волнением следят за активной областью, измеряя ее размеры, форму и магнитную активность. Магнитная активность, похоже, улеглась, и это может свидетельствовать о том, что магнитное поле либо слабеет, либо накапливает силы, подобно вулкану.

Вскоре все становится ясно. Обычно темные, через несколько секунд солнечные пятна вспыхивают необычайно ярко и остаются такими в течение нескольких минут. В это же время орбитальные солнечные телескопы отмечают бешеные магнитные флуктуации на Солнце, а несколько минут спустя спутники заливает высокоэнергетическое рентгеновское и гамма-излучение. Астрономы, наблюдающие с поверхности Земли за орбитальными обсерваториями, видят небывалые взрывные выбросы энергии, от которых зашкаливают приборы, после чего, внезапно, передача данных обрывается. Озадаченно они проверяют оборудование, но вскоре понимают, что проблема не на земле, а в небе: массивный поток энергии поджарил их орбитальные спутники.

Зная, что коммерческим спутникам также угрожает серьезная опасность, взволнованные ученые принимаются звонить в другие обсерватории, но телефоны тоже не работают. Бросившись к компьютерам, они пробуют электронную почту, мессенджеры, голосовые протоколы, все, что есть, но связь установить невозможно. Ничего не работает. Затем отключается электричество, и они понимают, что дальше будет еще хуже.

Вскоре после вспышки Солнце извергает еще один поток, на этот раз в виде бешеной волны субатомных частиц. Двигаясь с феноменальной скоростью, волна достигает Земли, врезаясь в защитное магнитное поле планеты и обходя его. В электромагнитном хаосе спутники гибнут один за другим от смертельного солнечного ожога.

Эффект ощущается и на поверхности. В линиях электропередачи внезапно резко подскакивает ток, они нагреваются, провисают и обрываются. Трансформаторы взрываются от перегрузок. Повсюду в США и Канаде рутинный распорядок персонала электростанций внезапно нарушен, и они самоотверженно и лихорадочно пытаются справиться с каскадом отключений, но ситуация безнадежна. Станция за станцией выходят из строя. Сначала электроэнергия пропадает на северо-востоке США, но уже через несколько секунд распространяющаяся волна отключений выводит из строя всю энергосистему. Квебек, Бостон, Нью-Йорк, Филадельфия… через несколько минут сотни людей остаются без электричества ночью, в самую суровую зимнюю пору. На следующее утро они просыпаются в промерзших домах, без света и возможности узнать, что случилось.

Через несколько часов более половины планеты остается без электроэнергии в одну из самых холодных зим на нашей памяти. В первую же ночь погибают тысячи, а в последующие несколько недель еще больше. Подключаются военные, делая все возможное, чтобы помочь тем, кто оказался в беде, но бедствием охвачена слишком большая территория. Количество смертей ужасает, это чудовищная катастрофа небывалых масштабов. Один лишь экономический ущерб оценивается триллионами долларов, и целые страны становятся банкротами.

В конце концов Солнце успокаивается. Группа активных пятен исчезает. Но магнитные процессы на Солнце невероятно сложны. Не проходит и нескольких недель, а в магнитном поле Солнца уже возникли новые петли и связи. Только ситуация на Земле нормализовалась, а люди похоронили умерших, как на поверхности звезды появляется новая группа уродливых пятен.

Мое Солнце — звезда

Издержки профессии астронома заключаются в том, что нам приходится получать по почте бесплатные учебники по астрономии. Как и спам в электронной почте (но массой в 5 кг), они приходят без уведомления и обычно отправляются прямиком в букинистический магазин собирать пыль (эквивалент спам-фильтра в реальной жизни). ...



Все права на текст принадлежат автору: Филип Плейт.
Это короткий фрагмент для ознакомления с книгой.
Смерть с небесФилип Плейт