Все права на текст принадлежат автору: Борис Борисович Жуков.
Это короткий фрагмент для ознакомления с книгой.
Дарвинизм в XXI векеБорис Борисович Жуков

Борис Жуков Дарвинизм в XXI веке

Светлой памяти

Бориса Михайловича Медникова

© Б. Жуков, 2020

© О. Добровольский, иллюстрации, 2020

© А. Бондаренко, художественное оформление, макет, 2020

© ООО «Издательство АСТ», 2020

Издательство CORPUS ®

* * *

От автора

Больше сорока лет назад вышла в свет небольшая книжка «Дарвинизм в ХХ веке». Ее автор, видный ученый и талантливый популяризатор Борис Михайлович Медников, поставил себе целью ознакомить широкого читателя с современным (на тот момент) состоянием эволюционной теории и ее положением в системе наук о жизни. И эту задачу он решил с блеском: «Дарвинизм в ХХ веке» можно назвать образцом научно-популярной литературы. Изложение получилось кратким, ясным, увлекательным и очень личным, счастливо избежав при этом как чрезмерных упрощений, так и непреодолимой для массового читателя сложности.

Книга, предлагаемая вашему вниманию, в значительной мере навеяна «Дарвинизмом в ХХ веке», что отражено уже в самом ее названии. Но это не подражание книге Медникова и не попытка ее «осовременить». Слишком многое отличает сегодняшнюю ситуацию от ситуации сорокалетней давности.

Во-первых, в ту пору еще очень свежи были раны, нанесенные лысенковщиной. Ее последствия не ограничивались ущербом для отечественной биологии, развитие которой было насильственно прервано именно в годы, оказавшиеся исключительно плодотворными для мировой науки. Пожалуй, еще хуже было то, что для целого поколения, получавшего образование в 1940-х — 1960-х годах, научные знания о живом оказались заменены ворохом бессвязных фантазий, не имевших отношения к реальности. Одной из задач книги Медникова было избавить читателей от этой каши в голове. А кроме того — восстановить распавшуюся связь времен, показать удивительные открытия второй половины ХХ века как естественное продолжение прозрений предшествующих эпох. Оборотной стороной этой непростой и благородной задачи стало изложение эволюционных концепций преимущественно как знания — надежного, твердо установленного, подкрепленного данными смежных наук и успешно решающего загадки, над которыми веками бились лучшие умы человечества. Эти же конкретные исторические обстоятельства породили проходящую через всю книгу яростную полемику автора с ламаркизмом. Ко времени написания «Дарвинизма в ХХ веке» идеи ламаркизма для мировой науки давно уже стали сугубо маргинальными, но в Советском Союзе оказались важной составной частью лысенковских «теорий» и к началу 70-х все еще оставались актуальными для многих читателей.

Современного читателя книги Медникова, вероятно, покоробит и обильное цитирование классиков марксизма-ленинизма, которые предстают выразителями некой абсолютной истины, освящающей своим авторитетом частные истины эволюционной теории. Сейчас трудно сказать, в какой мере это отражало личные философские убеждения Бориса Михайловича, а в какой — стремление защитить генетику и научную эволюционистику от идеологических нападок лысенковцев, доказать, что ошельмованная наука на самом деле гораздо лучше соответствует марксизму, чем взгляды ее гонителей.

Времена изменились. Сегодня уже мало кто помнит лысенковские представления о наследственности и эволюции (что, правда, дает возможность некоторым любителям сенсаций распространять легенду об «оклеветанном самородке»), а основы генетики и современной версии теории эволюции входят в школьную программу. Российская наука понемногу преодолевает губительную самоизоляцию: степень ее интегрированности в мировую науку сегодня выше, чем когда бы то ни было за последние сто лет. Ученые более не обязаны доказывать лояльность своих научных взглядов той или иной идеологии — но и не имеют возможности прибегать к идеологическим аргументам. Зато в образованном обществе широкое распространение получили взгляды, согласно которым истины не существует, а есть только набор мнений, любое из которых равноценно любому другому. (Например, нежелание нерадивой школьницы изучать теорию эволюции равноценно самой этой теории.) Показало свою оборотную сторону и великое завоевание открытого общества — свобода распространения информации, подкрепленная невиданным развитием информационных технологий. Платить за это приходится тем, что любая вздорная выдумка имеет те же возможности для распространения, что и самая глубокая научная теория. А поскольку выдумки рождаются на свет гораздо чаще и легче глубоких теорий, на их стороне оказывается колоссальный численный перевес.

Но самое главное, конечно, — изменения, произошедшие внутри самой науки об эволюции. Достижения молекулярной биологии, сорок лет назад бывшие важнейшими, но чисто академическими открытиями, ныне превратились в мощные инструменты исследования, открывающие перед наукой небывалые возможности. Сегодня, например, ученые могут не только «привязать» тот или иной признак к определенному гену (или группе генов) и определить его местонахождение в хромосомном аппарате, но и непосредственно прочесть «текст» этого гена, выяснить, в каких именно тканях и на каких этапах жизни он активен, что там делает и что им управляет. Прямое сравнение генетических текстов совершенно изменило наши представления о родственных связях между различными группами живых организмов. Настоящие революции произошли в иммунологии (особенно в знаниях о молекулярных механизмах иммунных взаимодействий), в биологии развития, в изучении межклеточных взаимодействий и дифференцировки клеток. В самой эволюционной теории появились новые концепции, по многим принципиальным вопросам расходящиеся с безраздельно господствовавшей в 70-х годах «синтетической теорией эволюции» (СТЭ), а то и прямо полемизирующие с ней. Изменился и контекст, в котором существует современная биология, — в том числе наши представления о том, какова природа научных теорий и каким критериям они должны удовлетворять.

Сорок лет назад Медников в предисловии к своей книге писал, что она сложилась как попытка ответа на вопрос: а не устарел ли дарвинизм? Сегодня этот вопрос вновь стоит перед нами, но смысл его уже не ограничивается проблемой, как совместить теорию полуторавековой давности с новейшими научными методами и результатами. Не менее важно сегодня понять и другое: какое место занимает эта теория в современной культуре? Почему и сейчас, несмотря на столь почтенный возраст, она продолжает оставаться центральной для всего круга наук о живом? Дает ли она что-нибудь для конкретных частных исследований? Какое отношение она имеет к повседневной жизни обычных людей, далеких от профессиональных занятий наукой? И наконец, не слишком ли глубоки изменения, произошедшие с ней за полтора века, чтобы продолжать называть ее «дарвинизмом»?

Желание ответить на эти вопросы и определило характер книги. По сравнению с книгой Медникова в ней меньше места отведено изложению общей генетики и синтетической теории эволюции — в основном за счет тех сведений, которые сегодня можно прочитать в школьном учебнике. (Разумеется, я не надеюсь, что всякий, кто закончил среднюю школу, помнит все, чему его там учили. Но тот, кто совсем не помнит соответствующих разделов курса биологии, вряд ли заинтересуется моей книгой.) Подробно разбираются только те понятия и положения, относительно которых в обществе часто бытуют совершенно неверные представления.

Рассказывая об идеях, гипотезах, теориях, сыгравших или продолжающих играть ту или иную роль в эволюционной биологии, я старался представить их не в виде бесспорных истин или столь же бесспорных ошибок — как это часто делается в учебниках при изложении истории науки («ценность теории

NN заключается в том, что… вместе с тем он совершенно ошибочно утверждал, что…» и т. п.). Мне (надеюсь, что и читателю тоже) гораздо интереснее выступать в роли не судьи, а болельщика, прослеживая логику научной мысли: чем соблазнился один ученый, увлекшись идеей, которая оказалась бесплодной, или на что опирался другой, выдвигая гипотезу, которая лишь много лет спустя была убедительно обоснована? Почему концепции, которые сегодня невозможно представить друг без друга, когда-то вели между собой непримиримую борьбу?

Роль болельщика предполагает пристрастность — которой, впрочем, я вряд ли смог бы избежать, даже если бы и пытался. Тем не менее при изложении альтернативных дарвинизму эволюционных теорий (которым я счел необходимым уделить гораздо больше внимания, чем Медников, — несмотря на то, что за разделяющие нас сорок лет их набор практически не изменился, а популярность сильно упала) я точно так же старался понять внутреннюю логику той или иной концепции и во всяком случае воздерживался от «окончательных приговоров». Исключение составляют только те разделы книги, где речь заходит о современном креационизме — попытках отрицать не только дарвиновский механизм эволюции, но и саму эволюцию как таковую. Причина проста: невозможно проследить логику мысли и выделить содержательную часть там, где заведомо нет ни того, ни другого. Все многочисленные креационистские опусы практически целиком состоят из обсуждения «слабых мест» эволюционизма (подавляющее большинство из которых существует лишь в воображении самих креационистов) и жалоб на игнорирование креационизма научным сообществом. Сказать что-либо «от себя» креационисты не в состоянии.

Моя пристрастность не означает и отказа от обсуждения реальных затруднений, которые испытывает сегодня дарвиновская теория. Небезызвестный доктор Ватсон в одном из рассказов специально поясняет: он не пишет о неудачах Шерлока Холмса не потому, что их не было, и не потому, что он хотел бы их скрыть, а потому, что там, где оказывался бессилен Холмс, никто другой тоже не добивался успеха, и тайна оставалась нераскрытой. Хотя в эволюционной биологии, на мой взгляд, дело обстоит точно таким же образом — ни одна из проблем, не нашедших убедительного решения в дарвинизме, не решена и альтернативными теориями, — я не намерен следовать примеру Ватсона. В конце концов, эта книга — не детектив, где в финале обязательно должны быть разрешены все возникавшие до того загадки. В науке такого не бывает никогда: любой решенный вопрос в ней порождает новые, а сегодняшняя трудность может оказаться завтрашней точкой прорыва. Может, впрочем, и не оказаться — это никогда нельзя сказать заранее.

Нельзя предсказать и то, какая из сегодняшних гипотез подтвердится, а какая будет опровергнута, какие из недавно добытых наукой фактов откроют пути для будущих исследований, а какие так и останутся ничего не значащими частными случаями, а то и вовсе окажутся результатом методологической ошибки. И конечно же, в эволюционной биологии, как и в любой другой науке, «там, где кончается знание, начинается мнение». Стараясь хоть немного передать страсти, бушевавшие когда-то вокруг теорий, ныне кажущихся бесспорными, я не вижу причин отказываться от этого в разговоре о современных дискуссиях. При этом одна из сторон в том или ином споре мне нередко ближе и симпатичнее, чем другая. И вовсе не обязательно мое мнение в таких случаях совпадает с мнением большинства ученых или наиболее авторитетных корифеев. Но во всяком случае я старался, во-первых, отделить спорные моменты от тех положений, относительно которых в научном сообществе царит единодушие, и во-вторых, как можно корректнее изложить и те точки зрения, которые мне лично не близки.

И последнее: прежде, чем начинать разговор о судьбе дарвинизма в XXI веке, надо, наверное, определить, чтó вообще мы будем называть словом «дарвинизм». В первые десятилетия после появления теории Дарвина этот термин часто употреблялся как синоним эволюционных взглядов вообще: кто признает идею исторического развития живых форм, тот и дарвинист. Однако сейчас столь расширительное употребление этого слова вряд ли уместно. С другой стороны, нельзя согласиться и с распространенным сейчас отождествлением дарвинизма с вышеупомянутой СТЭ: как бы ни были велики достижения этой теории, СТЭ — это лишь определенный этап развития дарвиновских идей или, если угодно, определенная их интерпретация. Пусть наиболее плодотворная на сегодняшний день, но все же не единственно возможная.



На мой взгляд, наиболее адекватным определением может быть такое: дарвинизм — это совокупность представлений о механизмах биологической эволюции, в которых ведущая роль отводится естественному отбору. Поскольку русский термин «естественный отбор» — это перевод английского natural selection, такие взгляды на эволюцию часто называют также селекционизмом. В этой книге оба названия будут употребляться как синонимы, но, поскольку второе малоизвестно за пределами круга профессиональных биологов, я буду чаще пользоваться словом «дарвинизм». Однако те читатели, которые полагают, что такие имена более подходят религиозным и идеологическим учениям, чем научным теориям[1], могут мысленно везде заменять «дарвинизм» на «селекционизм» — смысл сказанного от этого не изменится.

Вступление

Как представляет себе теорию эволюции обычный человек — развитой, образованный, интеллигентный, но не связанный по роду своих занятий и интересов с фундаментальной биологией? Если спросить его об этом, в ответ вы, скорее всего, услышите примерно следующее: «Ну, все живые существа произошли от других, более просто устроенных созданий; человек же произошел от обезьяны. Процесс этот был очень долгим и происходил так: в каждом поколении у некоторой части потомства происходили случайные изменения признаков — мутации. Те, у кого мутации оказывались вредными, погибали. Те же, у кого эти изменения были полезными, выживали, оставляли потомство и таким образом давали начало новым видам. Этот процесс называется естественным отбором».

Изложив все это, один добавит: «Только я во все это не верю. И вообще, я где-то читал, что все это давно опровергнуто, и ни один серьезный ученый сегодня в это не верит»[2].

Другой скажет: «Только я вот не понимаю… Ну вот, допустим, глаз — понятно, что те, у кого он есть, имеют преимущество перед теми, у кого его нет. Но не мог же такой сложный орган возникнуть в результате случайного изменения! Чтó должно было измениться у безглазого животного, чтобы получился глаз?»

«А я вот не пойму, — подхватит третий, — почему при этом все живое должно развиваться от простого к сложному? Ну вот, допустим, бактерии — они же прекрасно приспосабливаются к чему угодно. Зачем им усложняться, становиться многоклеточными?»

Четвертый вроде бы во всё верит, всё понимает и со всем соглашается. Но попробуйте задать ему несколько невинных вопросов. Ну, например, какой щенок имеет больше шансов стать звездой цирка — отпрыск длинной династии цирковых собак или потомок сторожевых псов? И почти наверняка вы услышите в ответ: «Конечно, потомок цирковых! У него же родители, дедушки-бабушки, все предки этому учились. Это же не могло совсем на нем не отразиться!» Если после этого вы спросите, какую же роль здесь играет естественный отбор, ваш собеседник, возможно, даже обидится, решив, что вы над ним издеваетесь[3].

Продолжая наш импровизированный опрос, мы можем узнать, что «не всё в эволюции можно объяснить» и «Дарвин был не во всем прав» (правда, что именно не поддается объяснению и в чем именно ошибся Дарвин, узнать обычно не удается). Что точные расчеты современных ученых показывают, что частота мутаций слишком мала, чтобы объяснить наблюдаемую скорость эволюции. Что есть и другие эволюционные теории, а также теории, которые вообще ставят под сомнение сам факт эволюции, возвращаясь на новом уровне к идее разумного творца. Наконец, что просто не может быть, чтобы развитие столь сложных и разнообразных систем обеспечивалось столь простым и универсальным механизмом — да еще предложенным 150 лет назад, когда наука ничего не знала даже о генах, не говоря уже о более глубоких, физико-химических основах функционирования живых систем.

Поразительным образом именно сейчас, когда у дарвиновской модели эволюции вообще не осталось соперников в рамках научного подхода[4], общественное мнение относится к ней довольно скептически. Впрочем, сомнения в справедливости и универсальности дарвинизма у разных людей имеют разную природу. У одних, собственно, это никакие не сомнения, а твердая априорная уверенность: этого не может быть, потому что не может быть никогда. (Причины такой уверенности тоже могут быть разными, но чаще всего она имеет религиозное или философско-мировоззренческое происхождение и, уж во всяком случае, никогда не основана на фактах.) Я, конечно, хотел бы, чтобы они прочли эту книгу и хотя бы задумались над тем, что в ней говорится. Однако всерьез рассчитывать на это не приходится: как и все убежденные в своей правоте люди, они обладают поразительным умением пропускать мимо ушей любые, даже самые однозначные и неоспоримые аргументы, чтобы в следующий раз сказать, что им так и не привели никаких доказательств[5]. Да и читать мой опус они, скорее всего, просто не будут: откроют, узнают, что «это опять пропаганда дарвинизма», и поставят обратно на полочку, чтобы вредная книжка ненароком не поколебала их разумную и независимую позицию. Так что я хоть и надеюсь на таких читателей, но пишу все-таки не для них.

Книга эта адресована тем, кто действительно сомневается, кто искренне не знает, кому верить: школьным учебникам или информационным агентствам, чуть ли не ежемесячно сообщающим о «коренном пересмотре всех взглядов ученых на эволюцию»? Именно в таких людях — образованных, любознательных, желающих знать, «как оно на самом деле», — я вижу своих возможных читателей. И предлагаю им совершить небольшую экскурсию в мир современных представлений об эволюции живых существ.

Отправной точкой нашей экскурсии будет та самая предельно общая схема эволюционного механизма, с которой они познакомились в средней школе.

Часть I. В переводе с викторианского

Глава 1. Дарвинизм на трех китах

В наше время первое знакомство с теорией Дарвина для большинства людей начинается в школе. И начинается оно с тех самых понятий, в которых когда-то изложил эту теорию сам ее создатель: «изменчивость», «наследственность», «естественный отбор». Сегодня, как много десятилетий назад, школьные учителя отчаянно пытаются втолковать своим подопечным разницу между определенной и неопределенной изменчивостью — хотя со времен выхода «Происхождения видов» прошло полтора века и такие расплывчатые понятия, как «неопределенная изменчивость», практически не используются в научном обиходе. Да что там ученые — сегодня любой школьник, даже не слишком увлекающийся биологией, знает, что наследственность — это гены, а изменения генов — это мутации. Правда, на вопрос, что означают эти слова, ответит уже не всякий.

Ну вот давайте и начнем с выяснения того, что сегодня знает наука об этих явлениях. И первым делом поговорим о том, что такое ген.

Атомы наследственности

Все мы со школьных времен помним хрестоматийную историю о том, как скромный августинский монах из провинциального города Брюнна в Австрийской империи (ныне Брно в Чехии) разгадал загадку наследственности, не поддававшуюся самым выдающимся и знаменитым умам того времени. Поэтому не будем сейчас останавливаться подробно на этом поучительном сюжете. Отметим лишь одно: ни сам Грегор Мендель, ни ученые, повторившие спустя треть века его открытия и создавшие на их основе классическую генетику, ничего не знали о материальной стороне изучаемых ими генов: из чего они состоят, как устроены, как работают и как обеспечивают формирование наследуемых признаков. Некоторые весьма уважаемые биологи совершенно серьезно рассматривали даже гипотезу, что гены суть вообще не материальные объекты, а некие «чистые формы» вроде геометрических фигур и тел — круга, треугольника, куба и т. п.

При этом, как ни странно, ученые того времени знали о генах не так уж мало. Им было известно, что каждый конкретный ген может существовать в нескольких вариантах, или версиях, — аллелях. Что в организме каждый ген представлен двумя экземплярами — одним от папы, другим от мамы. Таким образом, одна особь не может иметь более двух разных аллелей одного гена — хотя всего их могут существовать десятки. При половом размножении особь передаст каждому из своих потомков только по одному аллелю каждого гена, причем если они разные, то какой достанется данному конкретному потомку — дело чистого случая. Если в организме встречаются два разных аллеля одного гена, то обычно один из них внешне не проявляется, но при этом не исчезает, не изменяется и может быть передан последующим поколениям. И самое главное — гены не смешиваются и не делятся на части, каждый из них наследуется по принципу «всё или ничего», то есть дискретно. Выражаясь современным языком, можно сказать, что наследственная информация существует и передается от родителей к потомкам только в цифровой записи[6].

Все это было известно уже Менделю, хотя он и не пользовался термином «ген». Но лишь почти через сто лет после его работы наука наконец-то выяснила материальную природу гена. Оказалось, что ген — это участок молекулы дезоксирибонуклеиновой кислоты (ДНК). Длинные двойные цепочки этого полимера обладают замечательным свойством: каждая из них может служить матрицей для воссоздания второй (подобно тому, как с ключа можно сделать слепок, со слепка — новый ключ и т. д.). Это обеспечивается уникальной последовательностью азотистых оснований, которыми эти цепочки соединяются друг с другом. И эта же последовательность с помощью довольно сложного молекулярного механизма определяет последовательность аминокислот — молекулярных «кирпичиков», из которых строятся белки.

Таким образом, ген — это участок молекулы ДНК, кодирующий тот или иной белок. Работа этого белка в организме и формирует то, что мы называем наследственным признаком. Например, красные цветы красны потому, что в организме растения работает белок-фермент, производящий красный пигмент. А у растений с белыми цветами этот фермент отсутствует или неактивен из-за «опечатки» в соответствующем участке ДНК.

Впрочем, довольно скоро выяснилось, что все не так просто. Вот, скажем, клетки нашей кожи производят белок кератин. Для этого у них есть соответствующий ген. Он есть и во всех прочих клетках нашего организма, но ни нейроны, ни лимфоциты, ни клетки слюнных желез кератина не производят. Да и клетки кожи могут менять объемы его производства: те участки, которые постоянно обо что-то трутся, производят кератина больше (так возникают мозоли). Оказалось, что помимо кодирующих участков в ДНК есть и другие — включающие-выключающие ген и регулирующие интенсивность его работы. Ученые договорились было считать, что ген — это кодирующий участок плюс его «выключатели». Однако выяснилось, что один регуляторный участок (энхансер) может управлять сразу несколькими кодирующими.

Мало того, большинство генов оказалось гораздо длиннее, чем нужно для кодирования последовательности аминокислот в их белках. Когда с такого гена снята «рабочая копия» (матричная рибонуклеиновая кислота, мРНК), специальные ферменты вырезают из нее лишние куски, и только после этого она идет в работу. Причем «лишними» могут в одном случае оказаться одни куски, а в другом — другие. В результате с одного участка ДНК считываются несколько довольно разных белков — как если бы там было закодировано, скажем, победоносец, а после вмешательства ферментов получались бы то обед, то понос, то донос, то бес, то песец



На самом деле это сравнение не вполне точно: «победоносец» — слово хоть и не очень естественное, но вполне осмысленное и понятное. А та молекула РНК, которая считана с гена, выглядит совершенно бессмысленной последовательностью «букв», из которой только после «редактирования» ферментами (ученые называют этот процесс сплайсингом) можно получить осмысленные «слова».

Это скорее напоминает эффект ключа-трафарета, знакомого всем по титрам культового советского фильма «Приключения Шерлока Холмса и доктора Ватсона». Помните? Весь экран заполнен стилизованными буквами, не складывающимися ни в какие слова. Но вот невидимая рука накладывает на этот буквенный хаос черный лист с прорезями в определенных местах — и в этих прорезях появляется надпись: «Шерлок Холмс — Василий Ливанов».

Примерно так и работает сплайсинг — с той только разницей, что выполняющие его ферменты-«редакторы» имеют дело не с двумерным буквенным полем, а с линейной последовательностью «букв» — нуклеотидов. Зачем и почему почти вся наша наследственность устроена подобным «криптографическим» образом — вопрос, конечно, интересный, но мы его сейчас обсуждать не будем. (Скажем лишь, что дело тут, вероятно, не в шифровании, а в возможности компактно закодировать несколько вариантов одного и того же инструмента-белка — что-то вроде отвертки или дрели с разными насадками.) Нам сейчас важно другое: тот участок ДНК, который таким образом кодирует целый набор разных белков, — это один ген? Или несколько разных?

Однако при любом толковании понятия «ген» для него остаются в силе те свойства, о которых мы говорили выше: дискретность, вариативность, случайное распределение и независимое наследование, двойной набор в каждом организме[7].

И еще одно качество, о котором не знал ни Мендель, ни создатели классической генетики: как отдельный ген, так и любая их совокупность (хромосома, геном) представляет собой не что иное, как текст. И понимать это нужно не метафорически, а буквально: ген обладает всеми общими свойствами привычных нам текстов, и к нему приложимы все известные методы работы с ними. А то, что буквами в этом тексте служат мономеры нуклеиновых кислот — нуклеотиды, — ничего принципиально не меняет: человеческая культура знавала и более странные алфавиты.

Ошибки, которые делают нас

О том, что ген может изменяться, сегодня знают все. Слова «мутация» и «мутант» прочно вошли в разговорный язык — решительно изменив при этом свой первоначальный смысл[8] (как это часто случается с научными терминами, попадающими в обыденную речь). Согласно широко распространенным представлениям, мутации появляются сразу у множества особей, резко противопоставляют их особям нормальным и всегда вредны и опасны — либо для своих носителей, либо для всех остальных. Мутантом же сейчас именуют любое существо с уродливой или просто необычной внешностью — будь то безглазая рыбка, пятирогая коза или абсолютно нормальный, но никогда ранее не виденный вашим собеседником черный слизень.

Кроме того, почти все при слове «мутация» первым делом вспоминают об ионизирующем излучении — урановых рудах, атомных реакторах, рентгеновских установках и озоновых дырах, о Чернобыле и Хиросиме. О химических мутагенах помнят гораздо реже — хотя встреча с ними для человека, не имеющего дела по работе с изотопами и рентгеновскими установками, гораздо вероятнее, чем с радиацией. А вопрос о том, могут ли мутации происходить сами по себе, без радиации и мутагенов, поначалу вызывает замешательство — с чего бы это им тогда происходить?

Любителям анекдотов про чернобыльских мутантов будет, вероятно, интересно узнать, что специальные генетико-популяционные исследования полевок, обитающих в зоне отчуждения Чернобыльской АЭС (и даже конкретно в местах массового выпадения радионуклидов), не выявили сколько-нибудь заметного повышения у них частоты мутаций по сравнению с популяциями тех же видов из районов, не затронутых катастрофой. С этим согласуются и данные японских генетиков, обследовавших детей хибакуся (так в Японии называют тех, кто пережил атомную бомбардировку): частота новых мутаций у них оказалась не выше, чем у других японцев, родившихся в те же годы.

В той же Чернобыльской зоне на многих сильно загрязненных радионуклидами участках выросли целые рощи уродливых сосен — низкорослых, со странно укороченными ветками. Казалось бы, вот они — мутанты. Но когда «чернобыльские бонсаи» дали семена, ученые высеяли их на делянку с нормальным радиационным фоном. И из семян «мутантов» выросли обычные молодые сосенки. Уродство деревьев-родителей оказалось не мутацией, а морфозом: радиация грубо нарушила у них процессы индивидуального развития и формообразования, но практически никак не повлияла на их гены.

Откуда же взялось всеобщее убеждение в том, что радиация — главная и чуть ли не единственная причина мутаций? Косвенно виноват в этом замечательный американский генетик Герман Мёллер. Именно он в 1927 году впервые в мире показал возможность искусственного мутагенеза, использовав для этого рентгеновские лучи. Объектом в этих опытах служило любимейшее существо генетиков того времени — плодовая мушка дрозофила. Именно из-за ее необычайной популярности у коллег Мёллер ее и выбрал: генетику дрозофилы к тому времени уже неплохо изучили, и можно было воспользоваться уже выведенными чистыми линиями (группами организмов, внутри которых отсутствует генетическое разнообразие по одному, нескольким или вообще всем признакам), в которых гораздо легче выявлять вновь возникшие мутации. Впоследствии мутагенное действие всех разновидностей ионизирующего излучения подтвердили на дрожжах и других представителях царства грибов, на бактериях и иных организмах, а также на культурах клеток.

Почему же тогда этот эффект не обнаруживается у полевок, сосен и людей? Во-первых, разные виды излучения обладают разной проникающей способностью. Мёллер использовал рентгеновские лучи, хорошо проникающие даже сквозь значительную толщу биологических тканей[9]. К тому же у дрозофил толщина всех тканей, отделяющих половые клетки от внешней среды, составляет доли миллиметра, и рентгеновские кванты проникают к ним практически беспрепятственно. Тем более это справедливо для микроорганизмов и клеточных культур, где между лучом и клеткой-мишенью нет вообще никаких экранов.

Примерно такой же проникающей способностью обладает гамма-излучение, сходное по природе с рентгеновским: и то и другое представляет собой поток высокоэнергетических электромагнитных волн, только у гамма-лучей энергия (а значит, и разрушительное действие) каждого кванта еще выше. А вот у других видов радиации проникающая способность гораздо ниже. Альфа-частицы (ядра гелия) даже в воздухе летят недалеко, в плотных же средах (в том числе в живых тканях) их проникающая способность измеряется микронами. Бета-частицы (электроны, образовавшиеся в ходе ядерных реакций) проникают в живую ткань на несколько миллиметров[10]. Оба типа частиц полностью поглощаются одеждой. Даже нейтроны, слабо взаимодействующие с веществом из-за своей электрической нейтральности, в тканях пробегают лишь сантиметры.

Таким образом, в природных условиях реальный шанс подействовать непосредственно на половые клетки организмов размером хотя бы с полевку имеет только гамма-излучение (рентгеновские лучи в земных условиях существуют только в сконструированных человеком аппаратах). Это излучение возникает лишь в ходе ядерных реакций. В местах обитания живых организмов такой реакцией может быть только распад того или иного радионуклида — практически всегда сопровождающийся испусканием альфа- или бета-частиц или/и осколков ядер. Поскольку разрушительное действие всех этих видов излучения на незащищенные ткани гораздо сильнее, чем у гамма-лучей[11], организм, попавший под такой «обстрел из всех калибров» (будь то при ядерном взрыве, выбросе на АЭС или естественном выносе на поверхность пород, содержащих радиоактивные элементы), скорее всего, погибнет от рака кожи или даже лучевой болезни раньше, чем его половые клетки получат дозу гамма-лучей, достаточную для существенного повышения числа мутаций в них. Этим, вероятно, и объясняется парадоксальная невосприимчивость геномов разнообразных (но достаточно крупных) организмов к радиационному воздействию.

В отличие от радиации, химические мутагены способны проникать в сколь угодно глубоко лежащие ткани организма любого размера. Но в реальности подавляющее большинство происходящих в природе мутаций не имеют никакого отношения ни к радиации, ни к химии и представляют собой… самые обычные опечатки. Вспомним: каждая клетка несет в себе весь геном — полный набор генов данного организма. Перед делением этот набор должен быть скопирован, чтобы обе дочерние клетки получили по одному экземпляру. Копировальный аппарат клетки обеспечивает такую надежность копирования, о которой мы со всеми нашими средствами технического контроля до сих пор можем только мечтать, — он делает в среднем одну ошибку на десятки или даже сотни миллионов копируемых знаков[12]. Такая точность, поразительная сама по себе, выглядит просто немыслимой, если вспомнить, что речь идет о механизме квантовом: значащие части «букв» нуклеотидного кода — азотистые основания — состоят всего из 12–16 атомов.

Взаимодействие объектов такого размера подчиняется законам квантовой механики — что, в частности, означает, что оно всегда вероятностно и его результат никогда не может быть предопределен однозначно. Тем не менее живым организмам удалось свести долю «нештатных» исходов взаимодействия до неправдоподобно малых величин. Но поскольку, например, наш собственный геном содержит 3,2 миллиарда знаков-нуклеотидов, при каждом делении любой из наших клеток неизбежно возникает сколько-то «опечаток» — мутаций[13]. А поскольку формирование половых клеток тоже включает в себя неоднократное деление[14], то каждый из нас при зачатии гарантированно получает добрую сотню мутаций — опечаток, которых не было ни у мамы, ни у папы. Так что не нам испуганно вздрагивать при слове «мутант» — мы все мутанты. Буквально все до единого[15].

На этом месте читатель, представляющий себе мутации и мутантов по фантастическим ужастикам, нервно начнет осматривать себя: нет ли у него чешуи, копыт, глаз на стебельках, не набухает ли под кожей зачаток третьей руки или второй головы? Не торопитесь пугаться: около 90 % всего объема нашего генома составляют некодирующие участки ДНК, и подавляющее большинство ваших мутаций приходится на них. Из оставшегося десятка немалая доля — это синонимичные замены[16], которые в принципе не могут никак проявиться. Наконец, в любом белке большинство аминокислот не так уж важны для его функции: их замена так же мало затрудняет его работу, как написание «сковародка» или «винограт» — понимание нами смысла неправильно написанного слова. Ну а если уж вам совсем не повезло и какая-то мутация изменила одну из немногих ключевых аминокислот в жизненно важном белке — что ж, как известно, подавляющее большинство генов у нас имеются в двух экземплярах, так что даже если один из них будет производить дефектный белок, нужды вашего организма с успехом обеспечит второй[17].



И тем не менее в каждом поколении рождаются люди, которым не повезло еще сильнее — мутации изменили облик или функциональные возможности их организма. Происходит это по разным причинам. Например, если мутировал ген, расположенный в Х-хромосоме и потому имеющийся у мужчин в единственном экземпляре. Или если дефектный белок, производимый мутантным геном, не просто не выполняет свои функции, а вызывает какие-то нештатные, непредвиденные эффекты (например, если это сигнальный белок, а мутация изменила его таким образом, что, связавшись со своим рецептором, он долго не «слезает» с него, в результате чего рецептор ведет себя как залипшая кнопка). Или — чаще всего — если мутация, не вызывая видимых эффектов, понемногу распространилась в популяции, и в конце концов какой-то дальний потомок мутанта получил ее и от отца, и от матери. Как бы то ни было, мутация, получившая внешнее проявление, поступает на суд естественного отбора — последнего рубежа обороны, ограничивающего распространение вредных мутаций.

О том, насколько важен этот рубеж, можно судить по феномену так называемых псевдогенов. Так называют нуклеотидные последовательности, похожие на те, что у других видов присутствуют в качестве нормальных генов. Отличия невелики, но достаточны, чтобы с псевдогена не мог считываться никакой осмысленный белок.

Подобно кэрролловой Фальшивой Черепахе, которая в юности была Настоящей Черепахой, каждый псевдоген когда-то был настоящим геном. Он работал, производил нужный организму продукт, а если в нем происходила мутация, то естественный отбор отсекал ее или по крайней мере ограничивал ее распространение. Но затем что-то изменилось в условиях или образе жизни обладателей этого гена, и он стал ненужным (как, скажем, ген фермента гулонолактоноксидазы, синтезирующего аскорбиновую кислоту, для обезьян, в избытке получающих этот витамин в своей обычной пище). В новых условиях носители его неработоспособных мутантных версий ни в чем не проигрывали своим нормальным собратьям, и такие мутации не вычищались отбором. В конце концов «правильных» версий гена не осталось вовсе — в ходе многократного копирования все его экземпляры оказались непоправимо испорчены накопившимися опечатками. Теперь если нужда в его продукте вновь возникнет (скажем, человеку после перехода на тепловую обработку пищи очень пригодилась бы способность самостоятельно вырабатывать аскорбинку), использовать старый ген уже невозможно: вернуть ему работоспособность могут только несколько согласованных мутаций. Такое событие по своей вероятности уже мало отличается от чуда. Такова судьба гена, вышедшего из-под контроля отбора[18].

Примерно так обстоит дело с мутациями не только у человека и его ближайших родичей, но у всех живых существ, по крайней мере — у всех эукариот. Про мутации и их отношения с организмом, в котором они происходят, можно рассказать еще очень много интересного, но эта книга — все-таки не о мутациях, а об эволюции. Поэтому ограничимся сказанным, еще раз подчеркнув главное: мутации — это по большей части опечатки, ошибки копирования. Они возникают случайно, им подвержены (хотя и в разной степени) любые участки генома. Мутационный процесс идет постоянно; некоторые факторы окружающей среды могут усиливать или ослаблять его, но полностью он не прекращается никогда. Каждая конкретная мутация (замена конкретного нуклеотида в конкретном гене) крайне редка, так что вероятность одновременного появления в одной популяции нескольких одинаковых мутаций практически равна нулю. Как и всякая случайность, мутация может оказаться счастливой, дающей своему обладателю некоторые дополнительные возможности (о примерах этого мы поговорим несколько позже), но сами по себе мутации не могут создать сколько-нибудь сложной новой структуры. Наконец, мутации происходят во всех делящихся клетках, но значение для эволюции имеют только мутации в тех клетках, которые могут дать начало новому организму (у человека и других высокоразвитых животных это могут быть только половые клетки).

И напоследок. Все сказанное выше относится к так называемым точечным мутациям, они же SNP, или «снипы»[19], — заменам одного нуклеотида другим. Между тем мутациями, строго говоря, называются любые изменения генетического материала: потеря хромосомы или ее куска, развал одной хромосомы надвое, слипание двух хромосом в одну, перенос куска одной хромосомы в другую, инверсия (переворот участка внутри хромосомы задом наперед), появление лишней копии одной из хромосом — все это тоже мутации. Наконец, мутацией считается и удвоение (или другое кратное умножение) всего генома целиком — полиплоидизация.

Причины подобных перестроек не всегда ясны и подчас становятся предметом споров. Еще более спорным является вопрос об их эволюционном значении — особенно феномена полиплоидности. Ниже (в главе «Откуда берутся новые гены?») нам представится случай поговорить об этом подробнее.

Неотвратимая случайность
Заметим, что в основе всех вышеприведенных рассуждений о мутациях лежит взгляд на них как на чисто случайные ошибки. Именно так рассматривают их все версии и редакции дарвинизма — и именно этот взгляд неизменно становится объектом критики со стороны всех недарвиновских теорий эволюции. Можно сказать, что вопрос о случайности мутаций — важнейшая точка размежевания между дарвиновскими и недарвиновскими эволюционными концепциями.

Впрочем, о недарвиновских теориях эволюции мы поговорим несколько позже (во второй части книги), а пока попробуем разобраться с мутациями. Собственно говоря, существование случайных мутаций не отрицал никто: все понимали, что никакая реальная система копирования не может работать абсолютно точно, а значит, случайные ошибки в копируемых ею текстах всегда возможны. Как бы трепетно ни относились средневековые монахи-переписчики к священным библейским текстам, сохранившиеся экземпляры рукописных книг того времени содержат вполне ощутимое число случайных описок — это охотно подтвердит любой специалист по средневековым текстам.

Но тот же специалист скажет и другое: переписывая другие, светские тексты (сочинения античных авторов, летописи и хроники миновавших эпох и т. д.), монахи не стеснялись целенаправленно редактировать их в духе времени и собственных взглядов. В результате чего, например, убежденный фарисей Иосиф Флавий оказывался автором благоговейного отзыва об Иисусе Назаретянине. Неужели организм не делает ничего подобного со своими генами?

Мы знаем, что практически все организмы способны в тех или иных пределах изменяться адекватно условиям окружающей среды. Даже у самых простых из современных живых существ — бактерий — есть такие возможности. Если, скажем, в среду, где живет культура кишечной палочки, добавить молочный сахар (лактозу), очень скоро в клетках бактерий появится фермент лактаза, способный его расщеплять. Кончится лактоза — прекратится и синтез фермента. Различные бактерии умеют менять форму, отращивать или убирать жгутики и цитоплазматические выросты, покрываться плотной оболочкой или сбрасывать ее — в зависимости от ситуации.

Еще более разнообразны возможные ответы на вызовы среды высокоорганизованных существ. Они могут изменять свое поведение (кочевки, переход на сезонные корма), физиологию (зимняя спячка), морфологию (сброс листьев, отращивание новых побегов), биохимию. Некоторые организмы включают «запасную» программу развития: если развивающиеся личинки некоторых видов кобылок видят вокруг себя мало соплеменников, они развиваются в одиночных кобылок, если много — в саранчу (подробнее см. главу 11). Словом, организмы способны к адаптивным изменениям на самых разных уровнях. Так не логично ли предположить, что и их геном может меняться не только случайно, но и целенаправленно, соответственно требованиям окружающей среды?

О поисках «направленных мутаций» можно написать толстую книгу. Но подробный рассказ об этой драматической эпопее не входит в нашу задачу. Здесь же скажем лишь, что за несколько десятилетий энтузиасты так и не нашли ничего хоть сколько-нибудь убедительного. Неоднократно раздававшиеся крики «Эврика!» неизменно смолкали — либо после первой же корректной проверки, либо даже без нее, когда самим авторам не удавалось повторить свой результат.

Тем не менее в ряде публикаций последних десятилетий можно найти утверждения, что неслучайность мутаций все-таки обнаружена и более того — что представление о чисто случайном характере мутаций полностью опровергнуто. В тех случаях, когда авторы этих утверждений дают себе труд привести какие-либо подробности, речь обычно идет о некоторых действительно интересных феноменах, открытых в 1980-е годы.

Во-первых, обнаружилось, что у одного и того же вида частота мутаций различных участков генома может различаться очень сильно — порой на порядок. Во-вторых, оказалось, что при размножении в стрессовых (умеренно неблагоприятных) условиях частота мутаций в бактериальных клетках резко возрастает. Удалось даже выяснить механизм этого явления: при стрессе в клетке работает «альтернативная» ДНК-полимераза, делающая гораздо больше ошибок, чем «штатная». Влияние стресса на частоту мутаций вроде бы найдено и у эукариот, хотя там разница не так велика и само ее существование удается заметить не всегда.

Наконец, был расшифрован молекулярный механизм формирования антител — иммунных белков, связывающих любые достаточно крупные чужеродные молекулы, попавшие в организм. Оказалось, что при размножении В-лимфоцитов (клеток, производящих антитела) гены антител необычайно интенсивно мутируют. Поскольку все прочие гены этих клеток мутируют «в обычном режиме», остается сделать вывод, что гипермутагенез (так ученые назвали это явление) есть не что иное, как проявление какого-то специального механизма, изменяющего строго определенные гены. А это означало, что мутации могут быть результатом не только случайных ошибок копирования или внешних повреждающих факторов, но и целенаправленного воздействия организма на собственные гены[20]. Правда, процесс этот известен лишь для специализированных иммунных клеток, никогда не передающихся потомству. Но если это может делать лимфоцит, почему бы этого не делать гоноцитам — предшественникам половых клеток?

Если вам после прочтения двух последних абзацев показалось, что эти новые факты и в самом деле несовместимы с представлением о случайности мутаций, прошу представить, что вы пришли в казино. Вот за ближайшим к вам столиком крупье закончил принимать ставки и энергично крутанул рулетку. Случайны ли его действия? Конечно, нет — они вполне целенаправленны и включают в себя использование довольно сложного механизма, созданного специально для этих целей. А вот результат их совершенно случаен. И именно это является целью нашего крупье: заметив, что шарик останавливается на одних номерах чаще, чем на других, он (если только он не шулер) сочтет такую рулетку неисправной и перестанет ею пользоваться. Иными словами, целенаправленность механизма, обеспечивающего те или иные события, совершенно не исключает случайности самих событий.

Именно это и имеет место в рассмотренных нами случаях. Специальные исследования показали: и в случае повышенного мутагенеза у попавших в стрессовые условия бактерий, и в случае гипермутагенеза генов антител при размножении В-лимфоцитов возникают все возможные варианты мутаций. И вероятность каждого из них по отношению к другим — та же, что и в обычном, «фоновом» мутагенезе. Просто все они вместе случаются гораздо чаще.

Получается, что во всех случаях, когда обстановка требует внесения в генетический текст адаптивных изменений, это достигается только через внесение изменений случайных и их последующий отбор. Это кажется абсолютно нелогичным, противоречащим здравому смыслу. Если поведение, физиология, формообразовательные процессы в той или иной степени способны к прямым адаптивным изменениям — почему этого не происходит с генами? Если гены управляют не только всей повседневной деятельностью каждой клетки, но и всем процессом развития многоклеточного организма, следят за балансом внутренней среды, обходят блокированные биохимические пути, отвечают на вызовы внешнего мира и т. д. — как может быть, что ими самими управляет слепая случайность?!

Но давайте вернемся ненадолго к бактерии, умеющей синтезировать фермент только тогда, когда для него есть работа. Это происходит потому, что у нее есть, во-первых, ген данного фермента и, во-вторых, регуляторный участок ДНК, реагирующий на лактозу. Достаточно вывести из строя (скажем, мутацией) любой из этих участков, чтобы клетка утратила способность адекватно реагировать на присутствие лактозы, хотя бы от этого зависела ее жизнь[21]. Иными словами, способность организма к адекватным изменениям обеспечивается его геномом и им же задаются пределы этой способности. У более сложно устроенных организмов связь между изменением работы генов и внешними изменениями гораздо длиннее, включает множество промежуточных звеньев и не всегда может быть прослежена. Но принцип остается тем же: и сама способность меняться определенным образом в ответ на определенные внешние воздействия, и пределы этих изменений заданы геномом.

Меньше всего я хотел бы, чтобы меня поняли в том смысле, будто ни один организм не может в течение жизни создать ничего нового, а может только извлечь из генома подходящую программу, если она там есть. Это, конечно, не так — что легко видеть даже в нашем повседневном поведении. Практически любой более-менее здоровый человек может научиться ездить на двухколесном велосипеде или танцевать вальс — несмотря на то, что его геном не содержит информации о соответствующих последовательностях движений. Достаточно того, что он обеспечивает нам определенный набор элементарных движений и умение строить из них цепочки неограниченной длины и сложности. Примерно так же человек или техническая система, зная лишь 32 буквы русского алфавита, может прочесть или написать текст какой угодно длины и сложности. Но при этом не сможет прочесть даже один символ, которого не было в исходном алфавите (скажем, китайский иероглиф или знак из деванагари — традиционной индийской письменности). Некоторые люди, например, не могут правильно произносить русскую фонему «р». Это — врожденная особенность, и никакие тренировки тут не помогут: у таких людей просто нет мышечных волокон, позволяющих языку совершать нужные вибрации в нужном положении. В лучшем случае такой человек может научиться издавать подобие нужного звука, производя его другими частями речевого аппарата — например, гортанью (получается что-то вроде французского r). Индивидуальная адаптация, для которой нет генетической базы, невозможна.

Но если геном может изменять самые разные признаки организма в ответ на изменение внешних условий — кто или что может целенаправленно изменять сам геном?

Первый напрашивающийся ответ: сами гены, только другие. Мы сегодня знаем, что белки, кодируемые изрядной частью наших генов (по меньшей мере примерно тремя тысячами — при том, что их всего чуть более 21 тысячи), нужны исключительно для управления активностью других генов. И это — не считая регуляторных участков ДНК, которые управляют работой генов, не кодируя собственные белки. Если одни гены могут изменять активность других — почему они не могут изменить их содержание?

Могут. И даже иногда делают это (как, например, в случае с кодированием антител). Но чаще всего — одним, уже хорошо знакомым нам способом: внесением случайных ненаправленных изменений. Иногда — удвоением нужного гена, его вырезанием и т. д. И никогда — целенаправленным изменением последовательности составляющих его нуклеотидов в некоторую определенную сторону[22].

Причина этого, если вдуматься, проста. Целенаправленные изменения — в отличие от случайных — должны иметь программу, которую нужно как-то записать. Значит, кроме генетической инструкции по построению и функционированию организма должна существовать еще вторая инструкция, описывающая будущие изменения первой. А поскольку она должна описывать эволюцию генома в течение неограниченного времени, то и объем такой инструкции должен быть бесконечным. Понятно, что это абсурд.

Можно, конечно, предположить, что программа будущих целенаправленных изменений генома содержится не в нем самом и записана как-то иначе, не на языке нуклеотидных последовательностей[23]. Но это предположение ничего не меняет в наших рассуждениях: где бы эта программа ни находилась, каким бы компактным ни был способ ее записи, она должна иметь бесконечный объем. Иначе она рано или поздно будет полностью выполнена — и эволюционирующему виду останется либо остановиться в своем развитии, либо умереть[24].

Если мы все еще не хотим расстаться с идеей о целенаправленном изменении генов, нам остается одно: предположить, что у каждого вида есть этакий демон-программист, который непрерывно исправляет и дополняет генетическую программу вида, сообразуясь с наличными условиями внешней среды. Но тут уж одно из двух: либо это сверхъестественное, бессмертное и, вероятно, бестелесное разумное существо — либо…

Либо это наш старый знакомый — «демон Дарвина»[25], он же естественный отбор. В каком-то смысле он выполняет для каждого вида именно такие функции. Но о нем — немного позже. Пока что мы еще не до конца разобрались с тем, что его порождает.

Забытый кит

Строго говоря, классическая триада, с которой мы начали — изменчивость, наследственность, естественный отбор, — не вполне соответствует дарвиновской схеме. В ней у отбора были не две, а три предпосылки: изменчивость, наследственность и борьба за существование.

В той версии дарвинизма, которую всем нам преподавали в школе, положение этого третьего «кита» было довольно двусмысленным: не то чтобы его отрицали или замалчивали, но старались на нем подробно не останавливаться — особенно на внутривидовой борьбе. (Оно и понятно: идея борьбы за существование целиком взята Дарвином у небезызвестного Томаса Мальтуса, а основы школьного курса теории эволюции были заложены в советские времена, когда имя и идеи этого мыслителя были абсолютно одиозными.) Свою роль сыграл и не вполне удачный (но давно устоявшийся и уже не подлежащий замене) перевод довольно многозначного английского struggle куда более определенным русским словом «борьба».

В результате многие выносят из школы впечатление, что термин «борьба за существование» описывает в основном отношения организма с внешней средой, а также отношения между разными видами. Применение же его к внутривидовым отношениям вызывает искреннее удивление: разве существа одного вида так уж обязательно должны между собой враждовать?

Поэтому нам придется сказать несколько слов об этом забытом «ките» дарвинизма.

В главе о борьбе за существование Дарвин обсуждает широкий спектр взаимодействий организма с внешними агентами: природными стихиями (засухой, морозом, ветрами и т. д.), существами других видов (хищниками, паразитами, кормовыми объектами, конкурентами) и особями собственного вида[26]. Однако он неоднократно подчеркивает, что под борьбой за существование понимает в основном конкуренцию, причем в первую очередь — внутривидовую. Дарвиновское представление о борьбе за существование основано на простом и очевидном факте: всякая самовоспроизводящаяся группа живых существ (вид, популяция, штамм, линия, клон и т. д.) в принципе способна к неограниченному размножению, в то время как ресурсы, необходимые для жизни этих существ, всегда ограничены. Значит, не все, кто мог бы родиться, рождаются; не все родившиеся выживают и не все выжившие оставляют потомство. Это и есть внутривидовая борьба за существование — ни больше, ни меньше. В общем случае она не предполагает ни враждебности между участниками этого необъявленного соревнования, ни вообще каких-либо целенаправленных усилий с их стороны. То есть такие усилия могут быть, а могут отсутствовать или могут быть направлены в противоположную сторону (на смягчение конкуренции между сородичами) — сути дела это не меняет. Можно, как медведь, при каждом удобном случае убивать любого встречного детеныша своего вида; можно, как куропатка, подбирать осиротевших птенцов-соплеменников и растить их наравне со своими детьми; можно, как волк или лысый уакари[27], вовсе отказываться от собственного размножения ради выращивания братьев/сестер или племянников. Но ни один из этих образов действия не отменяет борьбы за существование — это лишь разные стратегии в этой борьбе. Кстати, не всегда альтернативные: тот же благородный дядюшка-волк, посвятивший жизнь воспитанию племянников, не задумываясь, порвет насмерть чужого переярка (волка-подростка), случайно забредшего на территорию стаи.

Но несмотря на все оговорки Дарвина (что борьба за существование — это прежде всего конкуренция, что он употребляет это выражение в сугубо метафорическом смысле и т. д.) очень многие читатели истолковали это понятие именно как активную и целенаправленную взаимную агрессию, «войну всех против всех» и даже как оправдание такой войны. Знаменитый русский революционер и видный идеолог анархизма князь Петр Кропоткин (в молодости занимавшийся натуралистическими исследованиями на Дальнем Востоке) в 1902 году выпустил книгу «Взаимопомощь как фактор эволюции», в которой, не отрицая дарвиновской борьбы за существование, резко противопоставлял ей взаимопомощь животных одного вида, считая эти отношения взаимоисключающими. При этом взаимопомощи Кропоткин придавал куда большее эволюционное значение, нежели борьбе, и считал, что «никакая прогрессивная эволюция видов не может быть основана на периодах острого соревнования» и «лучшие условия для прогрессивного отбора создаются устранением состязания путем взаимопомощи и поддержки».

Книга Кропоткина, написанная по-английски и изданная в Англии, получила некоторую известность в мировой эволюционной литературе. Однако при чтении ее становится очевидным, что автор просто перенес на отношения организмов в природе свои социально-политические идеи о роли взаимопомощи в человеческом обществе и истории. Не будем сейчас обсуждать, насколько адекватно представлял себе мятежный князь природу людей и образуемых ими общностей. Достаточно сказать, что главная идея ее «биологической части» (к которой относятся лишь две первые главы из восьми, а также часть приложений) основана, в сущности, на недоразумении — непонимании смысла понятия «борьба за существование».



Еще одно недоразумение, связанное с этим понятием, выражается в том, что оно-де устарело, так как сегодня мы знаем, что для эволюции важно не столько выживание, сколько успех в размножении. Поэтому некоторым видам присущи специальные приспособления, понижающие шансы своего обладателя на выживание, но компенсирующие это увеличением числа его потомков: от знаменитого хвоста павлина и подобных ему структур (о которых мы будем подробно говорить в главе 3) до поведения самцов некоторых пауков и богомолов, позволяющих своим партнершам съесть себя во время или сразу после спаривания. Это вполне понятно, если вспомнить, что при любом способе размножения воспроизводятся не особи, а их гены. Поэтому естественный отбор поддержит любые изменения, ведущие к увеличению суммарного числа потомков (т. е. копий генов), независимо от того, как достигается это увеличение — большей вероятностью выживания особи с такими признаками или каким-то иным путем. Более того: если обстоятельства складываются так, что, помогая родителям или братьям, обладатель данного набора генов увеличивает вероятность воспроизводства этих генов эффективнее, чем заводя и выращивая собственных детей, — естественный отбор поддержит те генные вариации, которые склоняют своих носителей именно к такому поведению. Даже если при этом оно обрекает самих носителей на бездетность.

Научная литература, посвященная тому, при каких условиях живым существам выгоднее помогать выжить сородичам, нежели собственному потомству, необозрима и включает в себя как полевые и лабораторные исследования реальных видов, так и построение моделей (математических и компьютерных). Мы не будем далее углубляться в эту проблематику[28]. В конце концов, все эти феномены не более удивительны, чем поведение самки, тратящей немалые ресурсы на своих детенышей (а то и рискующей ради них жизнью), — ведь она тоже обеспечивает не собственное выживание, а воспроизводство своих генов.

Но вот тем, кто на этом основании считает, что понятие «борьба за существование» устарело, нелишне будет знать, что сам Дарвин, ничего не ведая о генах, тем не менее ясно и недвусмысленно включал в это понятие и репродуктивный успех. «Я должен предупредить, что применяю этот термин в широком и метафорическом смысле, включая сюда зависимость одного существа от другого, а также включая (что еще важнее) не только жизнь особи, но и успех в оставлении потомства [курсив мой — Б. Ж.]», — писал он в III главе «Происхождения видов», в которой и вводилось понятие борьбы за существование.

На этом можно бы и закончить, но я уже слышу читательский вопрос: а что, к отношениям между разными видами понятие борьбы за существование неприменимо вовсе?

Было бы очень жаль, если бы меня поняли таким образом. Разные виды тоже могут бороться за существование между собой. Но такая борьба происходит в основном не там, где ее обычно привыкли искать. Можно, конечно, сказать, что заяц, удирая от волка, тем самым борется за свое существование. И это даже будет правдой — с одной маленькой оговоркой: борется-то он борется, но не с волком, а в первую очередь с другими зайцами. А во вторую — с потенциальными жертвами волка из числа других видов.

Это утверждение может показаться издевательством над здравым смыслом. Жизни зайца угрожает преследующий его волк, никаких других зайцев в поле зрения нет — так с кем же борется заяц? Даже если (как мы договорились выше) понимать «борьбу» не как прямую схватку, а как состязание, все равно участниками его выступают волк и заяц. Кто из них окажется быстрее — тот и выживет. При чем тут другие зайцы и другие виды?!

Но давайте немного изменим условия нашего мысленного эксперимента: заменим волка… ну, скажем, коровой или козой, а зайца — куртиной клевера. Вы готовы на полном серьезе утверждать, что клевер борется за существование с коровой? А ведь по сути отношения между коровой и клевером ничем не отличаются от отношений между волком и зайцем: один вид регулярно служит пищей другому.

Оставим на время терминологию и обратимся к сути дела. Итак, травоядное животное ест растение. Растение не может убежать, спрятаться или отбиться от своего поедателя и должно сохранять себя иным способом. Стратегия клевера — быстрое отрастание, позволяющее восполнить съеденные коровой побеги. Значит, при регулярном выпасе коров на клеверище преимущество будут получать те индивидуальные растения, которые быстрее других наращивают массу после объедания. Они будут успешнее выживать и размножаться за счет более медлительных растений того же вида и в конечном счете вытеснят их с этого луга вовсе — чего не произошло бы, если бы там регулярно не паслись коровы. Иными словами, в этом состязании за жизнь корова — фактор конкуренции, а самими конкурентами выступают разные особи (точнее, разные генетические варианты) клевера. Это они соревнуются (т. е. «борются») друг с другом посредством коровы.

Подставим обратно на место коровы — волка, а на место клевера — зайца. Изменилось ли что-нибудь в справедливости нашего рассуждения? Теперь мы ясно видим, что поначалу нас ввело в заблуждение внешнее сходство действий хищника и жертвы: волк бежит — и заяц бежит[29]. Тем не менее как и в случае с коровой и клевером, волк — фактор конкуренции, а заяц — ее участник, соревнующийся с другими зайцами: самые быстрые (а также осторожные, хорошо маскирующиеся и т. д.) выживут, более медлительные пойдут на прокорм волку[30].

Но и это еще не все. Вернемся к клеверу и корове. Допустим, рядом с лугом, на котором растет клевер и пасутся коровы, расположен перелесок. Растущие в нем березы, осины и ивы постоянно осыпают луг своими семенами. Некоторым из них удается достигнуть почвы и прорасти. Несколько лет — и над лугом поднялись бы молодые деревца, сомкнули бы кроны и постепенно подавили бы под собой и клевер, и прочие луговые растения. Но этого не происходит: коровы охотно поедают молодые неодревесневшие побеги, а соревноваться с клевером и другими травами в скорости отрастания деревья не могут. Иными словами, пасущиеся коровы выступают фактором не только внутривидовой, но и межвидовой конкуренции — без них луговые травы давно вынуждены были бы отдать свою территорию деревьям.



Это отнюдь не умозрительная схема: такой процесс в последние 25–30 лет можно наблюдать воочию во многих местах нечерноземной России — луга, где (в силу известных социально-экономических изменений) прекратились выпас скота и косьба травы, неуклонно превращаются в мелколиственные леса. В Кавказском заповеднике можно наблюдать еще более интересную картину: завезенные туда в 1940-х годах зубробизоны пасутся в основном на лугах — и за несколько десятилетий заметно увеличили площадь лугов за счет леса. Иными словами — расширили жизненное пространство для своих «жертв», превратившись в их наступательное оружие в борьбе с лесными видами.

Так кто же с кем борется, когда заяц бежит от волка?

Но вернемся к исходному вопросу. Когда коровы помогают луговым растениям бороться с лесными — это можно считать примером межвидовой борьбы. Но это борьба больших коалиций — на каждой из сторон выступает целостное сообщество, представленное множеством видов: растениями, животными, грибами, бактериями и т. д.[31] А бывает ли «дуэльная» межвидовая борьба, когда два вида борются друг с другом, не затрагивая (по крайней мере, непосредственно) интересы всех прочих?

Бывает. Например, когда серая американская белка, завезенная в Европу, вытесняет привычную нам рыжую белку или серая крыса-пасюк повсеместно в городах вытесняет черную крысу. Заметим: борьба происходит между близкими (не только по происхождению, но и по образу жизни) видами, нуждающимися в одних и тех же ресурсах и потому вынужденными конкурировать за них. В обоих приведенных случаях борьба настолько остра, что ее результаты можно заметить «простым глазом» — они проявляются за время, сопоставимое с длительностью человеческой жизни. Такая острота борьбы связана с тем, что борющиеся виды долгое время развивались независимо друг от друга, а затем внезапно вступили в контакт. Можно предположить, что, живи они все время на одной территории, они бы еще во время своего становления каким-нибудь образом поделили те ресурсы, на которые претендуют, уйдя тем самым от острой конкуренции.

В теоретической экологии это утверждение известно как «принцип Гаузе». В начале 1930-х годов московский биолог Георгий Гаузе экспериментировал с разными видами знакомых всем нам по школьному учебнику инфузорий-туфелек. Все выбранные им для опытов виды прекрасно росли порознь в лабораторных сосудах, питаясь бактериями и клетками дрожжей. Но когда Гаузе попытался вырастить в одной емкости «золотистых» и «хвостатых»[32] инфузорий, численность «хвостатых» после недолгого роста начала падать, и вскоре туфельки этого вида полностью исчезли. Ученый, которому тогда было немногим больше 20 лет, сделал вывод: два вида не могут стабильно занимать одну и ту же экологическую нишу в одной и той же экосистеме. Либо они достаточно быстро найдут способ ее разделить (как это сделали некоторые другие пары видов инфузорий в дальнейших опытах Гаузе), либо один из них неизбежно вытеснит другой.



Столь широкое обобщение на основе изучения лабораторных популяций немногих видов единственного рода выглядело, мягко говоря, слишком смелым. Однако в последующие десятилетия принцип Гаузе прочно утвердился в теоретической экологии. И хотя сегодня известно довольно много исключений из него, специальных случаев и т. д., но когда на одной территории оказываются два близких вида, скорее всего их взаимодействие закончится либо разделом первоначально общей ниши — либо исчезновением одного из них.

Со вторым вариантом все понятно, а как может выглядеть первый? В случае с белками, например, выяснилось, что та же серая белка успешнее рыжей в широколиственных лесах, но неспособна жить в лесах хвойных. Поэтому нынешняя завоевательная война, скорее всего, кончится «мирным договором»: дубравы и буковые рощи достанутся серым захватчикам, а за аборигенами останутся хвойные леса, а также те островки лиственных, которые отделены от основных массивов морем или полосами хвойных пород[33]. Говоря научными терминами, виды поделят исходно общую экологическую нишу, снизив тем самым остроту конкуренции.

В принципе, то же самое может произойти и в ходе внутривидовой борьбы: две группы особей одного вида могут поделить между собой его экологическую нишу и в дальнейшем совершенствоваться в использовании получившихся «наделов». Но это практически неизбежно ведет к видообразованию, разделению исходно единого вида на два. Мы еще вернемся к этому вопросу, когда будем рассматривать видообразование. А пока перейдем к главному герою теории Дарвина.

Отбор в натуре

Ну вот, теперь все предпосылки вроде бы в сборе. Живые организмы — это системы, воспроизводящие себе подобных. Это воспроизведение не абсолютно точно: в каждом поколении появляются «разночтения» в генетической программе, наследуемые затем потомками той особи, у которой они появились. Возникающие таким образом варианты могут влиять в ту или иную сторону на жизнеспособность, плодовитость и прочие важные характеристики своих обладателей. А поскольку численность какого бы то ни было вида не может расти неограниченно, в каждом следующем поколении должна увеличиваться доля тех особей, чьи индивидуальные особенности более способствуют выживанию и размножению, чем особенности других. Или, возвращаясь к терминологии Дарвина и его современников, — там, где есть изменчивость, наследственность и борьба за существование, должен происходить естественный отбор.

Должен?

«Измышленный Дарвином естественный подбор не существует, не существовал и не может существовать», — уверенно писал в 1885 году один из самых яростных критиков Дарвина, русский философ и публицист Николай Данилевский. При этом он признавал фактом и изменчивость организмов, и ее наследуемость, и способность любого вида размножаться в геометрической прогрессии, и даже борьбу за существование. Это особенно сердило полемизировавшего с ним пламенного дарвиниста Климента Тимирязева: «Итак, все посылки верны, но необходимый логический вывод из них, естественный отбор, — фантазм, мозговой призрак. Как это объяснить?»

Тимирязев подверг сочинение Данилевского сокрушительному разбору, убедительно показал несостоятельность всех его доводов, порочность его логики, незнание критикуемой теории и т. д. Для окончательного посрамления противника оставалось сделать самую малость — привести конкретные примеры действия естественного отбора в природе. Но этого Климент Аркадьевич сделать так и не смог при всей своей огромной эрудиции и страстной приверженности дарвинизму. Такими примерами биология конца XIX века попросту не располагала. И во времена полемики Тимирязева с Данилевским, и десятилетием позже естественный отбор оставался не более чем «необходимым логическим выводом», столь же умозрительным, как и в год выхода «Происхождения видов». Даже на рубеже XIX и XX веков известные ученым случаи реальных селективных процессов в природе можно было пересчитать буквально по пальцам одной руки. Было, например, известно, что куколки бабочек-крапивниц, окраска которых сходна с окружающим фоном, чаще доживают до вылупления, чем те, чья окраска с этим фоном контрастирует. Что средняя ширина головогруди крабов, обитающих в загрязненных водах, уменьшается по сравнению с шириной головогруди их сородичей, живущих в чистой воде (хотя и там, и там можно найти крабов как с широкой, так и с узкой головогрудью). Наконец, было известно наблюдение американского натуралиста Хермона Бампаса, подобравшего в 1896 году во время снежной бури сотни замерзающих воробьев. В теплом помещении к жизни вернулось лишь около половины находок — остальные умерли от переохлаждения. Бампас не поленился измерить всех живых и мертвых птиц — и обнаружил, что у выживших длина крыльев близка к средней, в то время как почти у всех погибших крылья были либо заметно длиннее, либо заметно короче.

Эти наблюдения были, конечно, интересны (работу Бампаса до сих пор активно цитируют в научной литературе, да и мы к ней еще вернемся в главе «Стабилизирующий отбор: марш на месте»), но для обоснования механизма, породившего все живые формы, существующие или когда-либо существовавшие на Земле, со всеми их характерными особенностями, столь ограниченного набора фактов было, мягко говоря, маловато. И что еще хуже, ни один из этих примеров ничего не доказывал. Ни для одного из рассматриваемых признаков не было известно, насколько он обусловлен именно наследственными факторами (между тем известно, что окраска куколок насекомых зависит, например, от температуры, при которой развивалась личинка). В двух случаях из трех была неочевидна и связь между признаком и тем фактором среды, который оказывал избирательное воздействие. Чем полезна узкая головогрудь при загрязнении воды? Каким образом длина крыльев связана с устойчивостью к холоду? Ну и, наконец, ничто не говорило о том, что подобные процессы могут привести к эволюционным сдвигам: превратить один вид в другой или хотя бы вывести отдельный признак за пределы видовой нормы. Наоборот, из данных Бампаса прямо следовало, что естественный отбор скорее противодействует любым возможным изменениям, поддерживая существующую норму. Именно такую роль, как мы увидим ниже, отводили отбору многие оппоненты дарвинизма: мол, он, может, и существует, но это чисто консервативный фактор, отсеивающий уродства и отклонения, но бессильный создать что-либо новое.


Искусственная эволюция
Нехватку данных о действии естественного отбора пытались восполнить, моделируя его отбором искусственным. Однако вопрос о правомерности перенесения полученных таким образом данных на природные процессы всегда оставался спорным — что наглядно показывает история самого знаменитого из таких экспериментов. В 1903 году датский генетик Вильгельм Иогансен[34] попытался проверить, так ли всемогущ естественный отбор, как предполагали классики дарвинизма (прежде всего Август Вейсман, о котором речь пойдет в главе «Август Вейсман против векового опыта человечества», и «дублер» Дарвина Альфред Уоллес). Он проделал простой опыт: высаживал семена фасоли, принадлежащей к одной из чистых линий. Фасоль — строгий самоопылитель, так что цветы на выросших растениях опыляли себя сами, и новым генам взяться было неоткуда. Иогансен собирал созревшие фасолины, взвешивал каждую, выбирал самые крупные, снова сажал их, снова дожидался урожая и выбирал самые крупные бобы… То есть проверял, как действует естественный отбор на признак, разнообразие которого не отражает различий в генах. Оказалось, что отбор не действует никак: сколько бы раз Иогансен ни отбирал самые крупные семена, средний вес фасолин в каждом поколении оставался одним и тем же, испытывая лишь небольшие колебания в ту или другую сторону, и никакой отбор не мог его никуда сдвинуть.

Сегодня вывод датского ученого звучит тавтологией: там, где нет генетического разнообразия, отбор в самом деле невозможен, так как ему попросту не из чего выбирать[35]. Однако в свое время эти опыты воспринимались чуть ли не как наглядное опровержение дарвинизма. Дело в том, что дикие растения и животные внешне гораздо более единообразны, чем культурные сорта и породы. Казалось само собой разумеющимся, что этому внешнему единообразию соответствует генетическая однородность, — а значит, природные популяции можно моделировать чистыми линиями.

О том, как было преодолено это представление, речь впереди (см. главу 2). Нам же сейчас важно, что уже этот ранний опыт показал: использовать искусственный отбор как модель отбора естественного вообще можно только, что называется, в первом приближении. Правда, в опытах Иогансена неадекватность модели определялась не тем, как велся отбор, а тем, какой «исходный материал» ему предлагался. Но позднее обнаружились и различия в самой природе искусственного и естественного отбора. Важнейшее из них состоит в том, что человек может вести отбор по одному или немногим признакам, не интересуясь, как при этом меняются прочие признаки и насколько организм в целом остается приспособленным ко всей совокупности факторов окружающей среды. Например, при одомашнивании кур древние селекционеры сознательно или бессознательно вели отбор на увеличение массы тела, уменьшение осторожности (пугливости) и снижение способности к полету. Если бы такому отбору подверглась популяция птиц, живущая в природе, этому противодействовал бы встречный отбор со стороны наземных хищников, который наверняка остановил бы подобные изменения задолго до приобретения домашними курами своего нынешнего облика. Человек же мог не только защитить своих несушек от лис и шакалов, но и компенсировать им те виды кормов, которые при таком телосложении оказываются для них недоступными. Понятно, что в природе таких «гарантий» не бывает — на организм всегда действует целый комплекс факторов отбора, обычно весьма разнонаправленных, и смоделировать его в эксперименте крайне трудно.

Даже когда человек не ведет отбора по собственному усмотрению, а предлагает экспериментальной популяции эволюционировать самостоятельно, результаты такой «эволюции в пробирке» порой радикально отличаются от эволюции тех же существ в реальной экосистеме. Например, сравнение генетических механизмов устойчивости насекомых-вредителей к ядохимикатам в эксперименте и на реальных полях и плантациях показали, что эти механизмы сильно различаются. В лаборатории вредители приспосабливались в основном «по-дарвиновски» — путем постепенного накопления множества мутаций, каждая из которых лишь немного уменьшала чувствительность к отраве. Реальные же «расы супервредителей» чаще всего приспосабливались скачком — мутантным у них оказывался часто всего один ген, но эта единственная мутация сразу давала высокую устойчивость. Причина такой разницы в том, что «высокополезные» мутации крайне маловероятны, а лабораторные популяции были слишком малы, чтобы в них случались столь редкие события. Но когда тот или иной яд применяется на десятках и сотнях миллионов гектаров, он становится фактором отбора для астрономического числа индивидуальных генотипов, — и среди них нужная мутация обязательно найдется, какой бы редкой она ни была. После чего ее обладатель сразу получает огромное преимущество не только перед вовсе неустойчивыми, но и перед «слабоустойчивыми» к яду собратьями.

Но это еще случай относительно простой: здесь удалось довольно быстро выяснить, почему одни и те же виды по-разному приспосабливаются к одному и тому же фактору в поле и в лаборатории. Чаще разницу между «лабораторной» и реальной эволюцией остается лишь констатировать. В ряде лабораторий разных стран мира прошли или проходят эволюционные эксперименты, в ходе которых ученые предоставляют популяциям организмов с быстрой сменой поколений возможность свободно эволюционировать, фиксируя ход эволюционных изменений. Особенно удобны для таких работ бактерии — не только потому, что они могут давать тысячи поколений в год, а солидная популяция их легко умещается в колбе или чашке Петри, но еще и потому, что часть их можно в определенный момент заморозить, а затем, разморозив, снова запустить эволюцию с выбранной точки и посмотреть, насколько результаты второй попытки совпадут с результатами первой (т. е. какие эволюционные изменения закономерны, а какие, наоборот, непредсказуемы). Самый известный и длительный эксперимент такого рода проводит непрерывно с 1988 года группа профессора Ричарда Ленски в Мичиганском университете. За это время сменилось множество (на момент написания этих строк — свыше 71 тысячи) поколений «подопытных», принесших ученым немало интереснейших сведений о реальной, наблюдаемой воочию эволюции.

Практически во всех подобных экспериментах эволюция идет непрерывно: штаммы, обладающие полезными мутациями, вытесняют прежнюю норму, а затем у кого-то из их потомков появляются признаки, делающие их еще более приспособленными, и носители этих признаков вытесняют вчерашних победителей. Между тем, работы по эволюции бактерий не в пробирке, а в реальной среде их обитания показывают совсем другую динамику. В главе 14 мы поговорим подробнее и об эксперименте Ленски (и некоторых его совершенно неожиданных результатах), и об интереснейшей работе датских исследователей, сумевших проследить реальную эволюцию нескольких линий бактерий на протяжении времени, сопоставимого с экспериментом мичиганской группы. Там же мы обсудим и возможные причины противоречий в результатах этих исследований. Сейчас же нам важно зафиксировать, что даже самопроизвольная, никак не «модерируемая» человеком эволюция в лаборатории может протекать не так, как эволюция тех же (или сходных) организмов в естественной среде обитания. И значит, если мы хотим получить надежные представления именно о естественном отборе и его характеристиках, надо наблюдать его именно в природе[36].


На земле, в небесах и на море
Однако непосредственно наблюдать проявления естественного отбора очень трудно. Надо поймать появление нового, ранее отсутствовавшего признака, доказать его наследственную природу и селективную значимость, а затем проследить динамику изменения его частоты в популяции. Эта динамика должна быть достаточно быстрой (не вести же наблюдения веками!), но именно в случае быстрых изменений мы, скорее всего, не успеем застать эволюционные сдвиги «в процессе». Отдельно еще нужно будет показать, почему такой-то признак дает преимущество при действии такого-то фактора: мы знаем, например, что хомяки-меланисты (полностью черные особи) лучше переносят зимовку, чем хомяки обычной расцветки, — но какая связь между избытком меланина и устойчивостью к долгой и холодной зиме?

Те немногие исследования, авторам которых удается выполнить все эти условия, можно считать настоящими научными подвигами. Таким героизмом, например, отмечена работа английских орнитологов супругов Питера и Розмари Грантов, в течение 40 лет (с 1973 по 2012 годы) изучавших дарвиновых вьюрков на Галапагосских островах. Им удалось показать, в частности, четкую связь между многолетними колебаниями климата, изменением среднего размера семян кормовых растений и изменением клювов вьюрков. Публикуемые ими работы попадали в разряд классических сразу после обнародования, а сами Гранты собрали обширную коллекцию научных наград, однако мало кто из их коллег оказался готов последовать их примеру.

Поэтому чаще биологи, пытаясь наблюдать в природе действие отбора, поступают наоборот: не подкарауливают появление нового перспективного признака, а вводят новый фактор отбора (или ищут случаи появления таких факторов по не зависящим от них причинам) и смотрят, как на него будет реагировать та или иная популяция.

Одна из самых известных работ такого рода — полевые опыты американских биологов со всем известными рыбками гуппи в речках острова Тринидад. Эти опыты ведутся уже более 40 лет — с 70-х годов прошлого века[37], — разными группами ученых, причем позднейшие исследователи имеют возможность продолжать и видоизменять эксперименты, начатые их предшественниками. За это время в речках сменилось более 50 поколений рыбок.

Исходная ситуация такова. В горных речках и ручьях относительно глубокие и медленно текущие плесы чередуются с перекатами и небольшими водопадами. Гуппи держатся в основном на плесах, на перекаты заплывают редко, а водопады для них почти непреодолимы. В результате все гуппиное население реки превращается в цепочку локальных популяций, изолированных или почти изолированных друг от друга. В тех же реках живут и враги гуппи — хищные рыбы, но для них мелководья и водопады — препятствия еще более серьезные, чем для гуппи. Поэтому хищников много в низовьях, по мере подъема вверх по реке их разнообразие уменьшается, и до верховий доходит только один вид — самый мелкий, нападающий в основном на молодь гуппи, в крайнем случае на взрослых самцов. (Все, кто держал гуппи в аквариуме, знают, что самцы у этих рыбок намного мельче самок, но при этом гораздо ярче окрашены, имеют большой вуалевидный хвост и другие украшения.) В результате в нижнем течении рек гуппи все время находятся под угрозой нападения хищников (причем разных и применяющих разные способы охоты), в то время как в самых верховьях рыбке, дожившей до «совершеннолетия», уже почти ничто не угрожает.

Ученые пересаживали рыбок из популяций, находящихся под прессом хищников, в безопасные местообитания и наоборот — из безопасных плесов в воды, кишащие хищниками; подпускали хищников в мирные заводи и т. д. И во всех случаях смотрели, какие изменения в облике, физиологии и поведении гуппи повлечет за собой изменение риска быть съеденным. В этих исследованиях было получено много интереснейших результатов, позволивших проверить целый ряд ранее высказанных частных гипотез об экологических и эволюционных взаимоотношениях хищников и жертв. Но нас сейчас интересует «базовый» результат, полученный еще в самых первых опытах: что происходит с гуппи, когда в прежде безопасной среде вдруг появляются хищники?

Оказывается, уже через несколько поколений[38] облик рыбок заметно меняется. Самцы становятся менее ярко окрашенными, их хвосты — менее декоративными и более функциональными. Изменялось и поведение гуппи: они делались более осторожными, начинали внимательнее относиться к тому, что происходит вокруг, чаще резко срывались с места, а скорость таких рывков намного возрастала. Но самое важное изменение заключалось в том, что новые поколения гуппи достигали зрелости быстрее и при меньших размерах, чем их предки, жившие в безопасных условиях. Это уже не могло быть ни результатом индивидуального обучения (как повысившаяся пугливость), ни эффектом сдвига средних величин за счет «выедания» одного края — уменьшение сроков взросления и конечных размеров шло поступательно в течение многих поколений.



Кстати, в 1998 году, когда эксперименты в тринидадских речках шли уже более 20 лет, другая группа американских биологов опубликовала работу об изменениях у тех видов морских рыб, которые в последние десятилетия подвергались интенсивному промыслу. Эти изменения оказались очень похожи на уже знакомый нам эволюционный ответ гуппи на появление хищника: у совершенно неродственных друг другу видов в самых разных регионах Мирового океана быстро сокращались сроки достижения зрелости и средние размеры взрослой особи. Изменения были настолько велики, что, например, значительная часть популяции североатлантической трески спустилась вниз на одну ступеньку пищевой пирамиды — то есть из хищников, питающихся более мелкой рыбой, превратились в поедателей планктонных рачков и прочей морской мелочи (став тем самым конкурентами своей прежней добычи). Десятилетием позже уже другая группа ученых сравнила эти данные с показателями близких, но не являющихся объектами промышленного лова видов рыб, — и удостоверилась, что с ними в те же годы не происходило ничего похожего.

Аналогичные данные были получены и для сухопутных животных, интенсивно добываемых человеком. А в 2010 году канадский зоолог Андре Дероше, измерив параметры крыльев у 851 экземпляра мелких певчих птиц (представлявших 22 разных вида), добытых в разные годы в лесных районах провинции Квебек, показал, что со временем у птичек менялась форма крыла — оно становилось острее. При этом совсем рядом, в штатах Восточного побережья США, в последние десятилетия ХХ века этот процесс шел в обратную сторону — концы крыльев мелких птиц приобретали более сглаженную форму. Наиболее бросающееся в глаза различие между этими регионами заключалось в том, что в Квебеке велись и ведутся масштабные вырубки хвойных лесов, в то время как в Новой Англии в последние десятилетия идет интенсивное лесовосстановление — отдельные лесные островки смыкаются в крупные массивы. Между тем морфологам и биомеханикам давно известно, что при обитании в кронах деревьев, где полет не может быть ни далеким, ни слишком быстрым, зато требуется высокая маневренность, птицам выгоднее иметь относительно короткие крылья с широкими концами. Жителям же открытых пространств, летающим далеко и быстро, полезнее удлиненные и заостренные крылья.



Конечно, придирчивый читатель может сказать, что изменение размера промысловых рыб и формы крыльев певчих птиц — не совсем чистый пример природных селективных процессов, поскольку фактором отбора тут выступал человек (пусть и ненамеренно и даже вопреки собственным интересам). Но и без человеческого вмешательства в природе оказывается достаточно факторов, избирательно влияющих на выживание и размножение тех или иных живых существ. Особенно много работ, где обнаруживалась эта селективность, стало выходить в самые последние десятилетия, когда у исследователей появилась возможность не просто фиксировать поведение животных при помощи киносъемки или видеозаписи, а поставить крошечную, но качественную и надежную автоматическую видеокамеру буквально под каждым кустом. Не меньшую роль сыграло и развитие технологии секвенирования ДНК, позволяющей, в частности, однозначно определить родственные связи особей в популяции и генетический вклад каждой из них в следующее поколение.

Используя эти методы, британские и испанские биологи обнаружили, например, что у полевых сверчков крупные самцы оставляют достоверно больше доживающих до «совершеннолетия» потомков, а среди мелких самцов успешнее размножаются те, что громче и дольше поют. Ничего сенсационного в этом, конечно, нет[39] — так оно и предполагалось всеми теоретиками едва ли не со времен Дарвина. Но теперь это уже не теоретические рассуждения, а твердо установленный факт.

«Мы выбираем, нас выбирают…»
Вообще, надо сказать, именно половой отбор оказался наиболее удобен для прямого изучения — возможно, потому, что он часто идет по заметным, хорошо различимым признакам.

Да и оценить его эффективность можно значительно быстрее, чем «классического» отбора на выживание: не надо наблюдать за носителями разных признаков всю их жизнь, чтобы выяснить, у кого она окажется длиннее, — достаточно сравнить число потомков, оставленных ими после первого же сезона размножения (а то и вовсе число успешно завершившихся ухаживаний). Между тем еще полвека назад в литературе, посвященной эволюционным процессам, о половом отборе почти не вспоминали, да и теперь некоторые биологи старой школы недолюбливают это понятие. Главная их претензия — половым отбором можно объяснить что угодно. Допустим, у какого-нибудь вида некий признак никак не поддается дарвинистскому истолкованию: он требует затраты ресурсов, делает своего обладателя более уязвимым для хищников и т. д. и т. п., а пользы от него решительно никакой. При этом признак из популяции не исчезает, переходит из поколения в поколение, порой даже увеличивает частоту и выраженность. Казалось бы, наглядное опровержение теории Дарвина? Ничуть не бывало — всегда можно сказать, что этот признак развился под действием полового отбора! А почему особи данного вида испытывают странное влечение к явно дисгармоничным формам — так кто ж их знает?

Доля правды в таком отношении, несомненно, есть: слова «половой отбор» слишком часто выглядят фиговым листком, прикрывающим неспособность автора той или иной работы дать сколько-нибудь правдоподобное объяснение обсуждаемым фактам (либо примирить эти факты с какой-нибудь милой его сердцу теорией). Но все же в нарисованной картине краски явно сгущены. Во-первых, половым отбором обычно объясняют явно бесполезные или гипертрофированные признаки, присущие только одному полу (чаще всего самцам). В самом деле, очень трудно представить себе, что критерии сексуальной привлекательности окажутся одинаковыми у обоих полов одного вида животных — так ведь недолго доиграться и до утраты сигнальных признаков пола[40]! (Не говоря уж о том, что объяснять что-то «половым отбором» можно только для животных с активным и достаточно сложным брачным поведением — попытка объяснить таким образом яркую окраску лишайника или необычную форму паразитического червя в лучшем случае будет воспринята как шутка.) А во-вторых, сегодня подобные чисто теоретические объяснения могут считаться достаточными разве что при попытках реконструировать происхождение чего-нибудь, эволюция чего не оставляет материальных следов, — например, прямохождения или человеческого языка. В тех же случаях, когда речь идет о современности, предположения о роли полового отбора принято подтверждать фактами — именно потому, что в наши дни такие предположения поддаются проверке. В результате мы сегодня знаем, что огромный хвост самцов длиннохвостой вдовушки, кожные выросты-«усы» на верхней губе самцов диких родичей аквариумной рыбки моллинезии и ряд других гротескных (на взгляд человека) структур, включая знаменитый хвост павлина, действительно имеют значение для успеха их обладателей у противоположного пола. Это уже не домыслы изворотливых теоретиков, а экспериментальный факт.



О половом отборе, о том, как причудливо он связан с отбором естественным, о теоретических моделях, которыми исследователи пытаются описать и объяснить этот круг явлений, и о той путанице, которая порой при этом возникает, мы будем специально говорить в главе 3. Здесь мы коснулись этой темы лишь как примера селективных процессов, постоянно происходящих в природе.

Разумеется, помимо представлений противоположного пола о красоте, на живые существа действуют и другие факторы — и столь же избирательно. И в некоторых случаях эту избирательность удается показать наглядно. Несколько таких случаев мы уже упомянули выше; к ним можно добавить неоднократно показанную в экспериментах действенность маскировочной окраски — от знаменитых опытов Алессандро Чеснолы, показавшего еще в начале ХХ века, что насекомые, окрашенные в тот же цвет, что и растения, на которых они находятся, имеют куда больше шансов избежать птичьего клюва, чем особи того же вида, чья окраска отличается от фона, и до недавней работы шотландских исследователей, продемонстрировавших парадоксальный факт: эффективность маскировки жертв основана на способности хищника обучаться различению съедобных и несъедобных предметов, т. е. на приспособительном поведении самого хищника. Столь же неоспоримо показано, что носители разных версий некоторых генов сильно различаются по восприимчивости к тем или иным инфекционным болезням и другим важным для их выживания факторам.

Примеры такого рода можно приводить и дальше, но их механическое перечисление уже не даст нам ничего нового. Куда интереснее посмотреть на некоторые нетривиальные подробности, обнаруженные в работах по изучению естественного отбора в природе.

Когда организм не согласен с эволюцией
Известно, что любому живому существу постоянно приходится искать компромисс между противоречивыми требованиями окружающей среды — в частности, между нуждами размножения и самосохранения. Слишком страстные сексуальные устремления, слишком большой вклад в потомство, раннее созревание, минимизация резервов организма и т. д. неизбежно влекут увеличение рисков — быть замеченным и съеденным хищником, не пережить неблагоприятный сезон и т. д. И наоборот: особь с неброской внешностью, неактивная в поисках партнера, легко прерывающая брачные ритуалы при малейшей угрозе, долго растущая и накапливающая запасы, прежде чем вступить в размножение, проживет, скорее всего, дольше других, но рискует не оставить потомков. Значит, надо выбирать какую-то промежуточную стратегию, а при изменении обстановки (например, резком возрастании угрозы нападения хищников) — смещать ее в ту или иную сторону. Такие же компромиссы приходится, согласно современным эволюционным моделям, искать и виду в целом.

Так вот, российский этолог Владимир Фридман, комментируя результаты опытов с тринидадскими гуппи, обратил внимание на то, что в этом смысле изменения в индивидуальном поведении рыбок и эволюционные изменения в популяции пошли в разных и до некоторой степени противоположных направлениях. В популяциях, столкнувшихся с внезапным появлением хищников, гуппи (особенно самцы) стали осторожными, пугливыми, расходовали гораздо меньше времени и сил на ухаживания и всегда готовы были их прервать — то есть отдавали приоритет личной безопасности перед размножением. А в ряду поколений изменения шли в сторону мелких, быстро созревающих, сексуально активных особей — т. е. в сторону роста «вложений» в размножение за счет уменьшения «вложений» в собственный рост и безопасность.

Это означает, что наблюдаемые сдвиги — не результат суммирования индивидуальных адаптивных изменений, а именно эволюционный процесс, протекающий независимо от намерений и устремлений членов эволюционирующей популяции и даже порой вопреки им. Помимо всего прочего, это показывает наивность эволюционных концепций, пытающихся как-то увязать механизмы эволюции с «желаниями», «стремлениями», «волевым порывом» и прочими субъективными мотивами индивидуумов[41], включая и пресловутое ламарковское «упражнение или неупражнение органов» (см. главу «Август Вейсман против векового опыта человечества»). Да, живые организмы могут приспосабливаться к изменениям среды как на индивидуальном уровне — изменяя свою физиологию и/или поведение, — так и в ряду поколений. Да, реакции индивидуумов могут совпадать (и чаще совпадают) по направлению с эволюцией популяции как целого. Но это не более чем совпадение: такие реакции развиваются независимо друг от друга и могут проходить в разных направлениях. Внутренняя связь между ними — примерно того же порядка, что между разогревом-остыванием печки в доме и сменой времен года.

В 2014 году относительную независимость индивидуального приспособительного поведения и адаптивной эволюции подтвердили зоологи из Университета Монтаны — совсем другим образом и на другом объекте. Они изучали поведение американских беляков. Эти зайцы, как и их «тезки» из Старого Света, обитают в местах, где зимой подолгу лежит снег, и дважды в год меняют окраску: весной — с белой на серовато-бурую, осенью — наоборот. Линьки беляков довольно точно приурочены к средним за много лет срокам установления снежного покрова и схода снега в данной местности. Но год на год не приходится, да и преобладающий цвет пейзажа меняется не в одночасье — особенно весной, когда уцелевшие сугробы перемежаются проталинами. Понятно, что белый заяц на бесснежном участке леса заметен издали даже в густом кустарнике, равно как и бурый заяц на снегу: маскирующая окраска превращается в демаскирующую. Ученых интересовало, учитывают ли сами косые соответствие цвета своей шубки цвету окружающей местности. Например, в период чересполосицы зайцы в белой зимней шерсти могли бы больше времени (хотя бы того, когда они сидят неподвижно) проводить на снегу, а зайцы в «летней форме» — на проталинах. Или когда цвет шубки совсем не соответствует цвету пейзажа (скажем, заяц уже перелинял на зиму, а снега все нет и нет), они могли бы сократить активность (хотя бы дневную) и больше времени проводить в естественных укрытиях.



Проведенные исследования показали, что ничего этого беляки не делают: бурые и белые зайцы одинаково предпочитают сидеть на проталинах (видимо, просто потому, что там теплее), а их активность и привязанность к убежищам никак не зависят от соответствия или несоответствия их окраски преобладающему цвету. При этом дополнительные исследования подтвердили, что сомневаться в полезности покровительственной окраски не приходится: там, где глобальное изменение климата сдвинуло сроки выпадения и схода снега, время линьки начинает сдвигаться в ту же сторону. Т. е. естественный отбор действует независимо от того, пытаются ли сами животные индивидуально приспособиться к меняющимся условиям или (как в данном случае) нет.

Отбор взад-вперед
В опытах с тринидадскими гуппи (к которым мы еще не раз вернемся в этой книге) была показана и еще одна важная вещь: результат селективных процессов может оказаться контринтуитивным, нелинейным, и о нем нельзя судить по первым видимым сдвигам. Еще ярче этот эффект проявился в другой замечательной работе, также посвященной изучению естественного отбора и по общей схеме очень сходной с тринидадскими исследованиями.

Авторами ее были биологи из Гарвардского университета и Калифорнийского университета в Дэвисе во главе с профессором Джонатаном Лозосом, а объектом — ящерицы Anolis sagrei. Эти рептилии обычно обитают на земле, но нередко забираются и на деревья. Группа Лозоса выпустила на шести маленьких островках Багамского архипелага, где жили анолисы, хищных игуан Leiocephalus carinatus, охотящихся на анолисов. Шесть других островков, на которых у анолисов не было наземных врагов, служили контролем.

Через полгода численность анолисов на островах с хищниками упала вдвое, а у выживших средняя длина лап заметно увеличилась по сравнению с исходной. Еще через полгода анолисы на этих островах встречались только на деревьях, а их лапы стали в среднем короче, чем до начала эксперимента. (Считается, что длинные лапы позволяют быстрее бегать по земле, а короткие более удобны для жизни на деревьях.) При этом на островах, где хищников не было, ни численность, ни пропорции анолисов не претерпели никаких изменений.

Судя по крайне сжатым срокам изменений, первую фазу можно назвать эволюцией только условно: хищники просто переловили половину популяции раньше, чем она успела найти эволюционный ответ на их появление. «Удлинение» лап здесь — эффект не эволюционный, а чисто статистический: если из корзины с сотней яблок разной величины убрать полсотни самых мелких, средний размер яблок в корзине заметно увеличится, хотя ни один конкретный фрукт не станет больше. Однако этот эффект показывает, что игуаны ловили в основном коротконогих анолисов, т. е. действовали именно селективно (избирательно) — хотя на земле эти хищники способны поймать даже самого длинноногого анолиса.



Гораздо интереснее последующее укорочение ног. Его уже нельзя объяснить простым «выеданием самых длинноногих»: средняя длина лапы упала ниже исходного уровня, чего никак не могло получиться в результате механического изъятия сначала всех коротконогих, а затем всех длинноногих — от популяции бы просто ничего не осталось. Значит, в новых поколениях анолисов длина лап уменьшилась за счет последовательного отбора, сумевшего на базе имеющегося генетического разнообразия не только вернуть этот показатель к исходному значению, но и продвинуть его в противоположную сторону. (Через несколько лет группа, возглавляемая одним из соавторов Лозоса — Томасом Шёнером, — показала, что лапы у анолисов, живущих на островах с хищниками, стали еще короче; при этом анолисам оказалась доступной значительно бóльшая часть кроны, чем через год после вселения хищников.) Заметим, что изменения коснулись не только строения, но и поведения анолисов — именно их переход к древесному образу жизни сделал коротконогость выгодной[42].

В этой красивой работе заслуживает внимания еще одно обстоятельство — то, что именно такой двухфазный ответ (первоначальное удлинение лап с последующим их укорочением при переходе к древесному образу жизни) предсказывали предварительные расчеты на компьютерной модели. Таким образом, распространенное мнение, что «теория Дарвина может все объяснить, но не способна ничего предсказать», мягко говоря, не вполне верно.

«Сию же минуту проверить веками!»
В наше время научная литература по селективным процессам в природе поистине необъятна. Однако и сегодня в некоторых сочинениях (как правило, не собственно биологов, а представителей смежных специальностей — в частности, историков биологии, а то и просто мыслителей широкого профиля) можно прочитать, что идея естественного отбора остается чистым умозрением, не подкрепленным (или недостаточно подкрепленным) фактами. В некоторых случаях это превращается уже в чисто словесную эквилибристику — когда утверждается, например, что отбор существует «как наглядная реальность», но не «как фактор эволюции» (не спрашивайте меня, что это значит). Другие критики полагают, что примеры конкретных селективных процессов, о которых шла речь выше, — это капля в необозримом океане биологических явлений, и то, что некоторые из этих явлений хорошо объясняются дарвиновскими механизмами, еще не означает, что этими механизмами можно объяснить и все остальные случаи. Интересно, что эти авторы любят ставить в пример дарвинистам физику — в ней, мол, соотношение эмпирических знаний и их теоретических объяснений близко к идеальному, и биологам следует стремиться к такому соотношению, а не утверждать, что теория, подтвержденная для нескольких случаев, справедлива и для несчетного множества остальных.

Между тем в момент рождения ньютоновой механики телá, движения которых она описывала, можно было пересчитать буквально по пальцам: планеты (коих на тот момент было известно шесть), Луна и, возможно, наиболее крупные спутники других планет. К подавляющему большинству известных тогда движущихся тел (живым существам) она была вовсе неприложима, в отношении других (лодка, корабль, выстреленное ядро и т. д.) давала лишь некоторые частные результаты. Даже свой парадный пример — маятник — ньютонова механика описывала с изрядными допущениями, и это описание хорошо совпадало с эмпирическими данными лишь для небольших углов отклонения и короткого времени наблюдения. Тем не менее ее довольно скоро признали образцом научной теории и больше двухсот лет никто не сомневался, что она справедлива для всех тел и всех движений (пока не были обнаружены факты, прямо противоречащие ей[43]). И такое отношение к ней проистекало не из какого-то особого авторитета Ньютона, а из понимания, что в большинстве случаев измерить все силы, действующие на движущиеся тела, технически невозможно. Почему же к эволюционной теории подходят с иными мерками — хотя на ее объекты действует гораздо больше факторов в гораздо более сложных и разнообразных сочетаниях?

Наконец, чаще всего позиция критиков примерно такова: «Ну да, допустим, ваш отбор может обеспечить распространение уже имеющегося приспособления, определяемого обычно одним геном. Но никто никогда не видел, чтобы он создал новую форму живых существ, чье строение тела по многим признакам отличается от их предков».

Как легко видеть из приведенных примеров, это, мягко говоря, не совсем так: действие отбора продемонстрировано не только на простых признаках, жестко определяемых единственным геном, но и на сложных полигенных признаках[44] — таких, как рост, скорость развития и полового созревания, пропорции тела и поведение. Тем не менее некоторая доля истины в этих утверждениях есть. Можно спорить о том, достаточно ли оснований считать возникшие в эволюционных экспериментах формы видами, но возникновение таксонов[45] более высокого ранга (родов, семейств и т. д.) под действием отбора действительно до сих пор никто не видел.

Точно так же, как никто не видел превращения известковых останков морских планктонных организмов в мел и далее в известняк и мрамор. Как никто не видел рождения звезд и планет из холодных скоплений космического газа и пыли (в лучшем случае у нас есть только «мгновенные снимки», которые мы интерпретируем как этапы этого процесса — но такие «снимки» у нас есть и для эволюционных процессов). Как никто не видел формирования алмазов в глубине земной мантии (искусственные алмазы не в счет — выводить искусственным отбором сорта и породы живых существ мы тоже умеем, но критиков дарвинизма это не убеждает). Как никто не видел появления новой идеи или образа в мозгу человека — в том числе и в своем собственном. В нашем мире есть много процессов, непосредственное наблюдение которых, мягко говоря, затруднительно — мы имеем дело только с их результатами. В таких случаях у науки остается один путь: строить теоретические модели таких процессов, делать из них выводы и сравнивать их с тем, что доступно наблюдению. Если моделей несколько, нужно выбирать ту, выводы которой лучше всего согласуются с наблюдениями, которая объясняет возможно бóльшую часть наблюдаемых явлений и не делает явно неверных предсказаний. Даже если она может объяснить далеко не всё.

Прошу прощения у читателей за эти азбучные истины научной методологии. Глянем теперь на вопрос о применимости дарвинизма к эволюции крупных (надвидовых) групп организмов с учетом сказанного.

Возможность соотнесения наших знаний об элементарных механизмах эволюции с крупными эволюционными событиями — действительно большая и серьезная проблема, и мы будем специально обсуждать ее в главе 15. Но видеть в ней довод против дарвинизма (или хотя бы против его безраздельного господства в эволюционной биологии) можно было бы лишь в том случае, если бы у нас была какая-то другая теория, предлагающая иной, недарвиновский механизм крупных эволюционных изменений. Тогда можно было бы сравнить, какая из этих теорий лучше объясняет имеющиеся факты.

О соперниках теории естественного отбора и их исторических судьбах мы будем подробно говорить во второй части книги. Здесь же скажем вкратце: те направления эволюционной мысли, которые в разное время выдвигались на роль альтернативы дарвинизму, — это не более слабые теории. Строго говоря, это вообще не теории. Это в лучшем случае «ТЗ[46] на теории», которые предстоит когда-нибудь создать. Сочинения их сторонников состоят в основном из коллекций различных фактов и попыток убедить читателя, что в рассматриваемых случаях дарвинистские объяснения не работают. Можно спорить о том, насколько справедливо это утверждение в каждом конкретном случае, но нельзя не заметить, что авторы никогда не предлагают никаких иных объяснений — кроме самых общих слов о пока еще не открытых наукой «законах» и «механизмах».

Кто автор «Давида»?
Здесь нужно сказать несколько слов на тему, без которой не обходится ни одно изложение теории эволюции — от школьного учебника до фундаментальных пособий для будущих специалистов. Тема эта называется «Творческая роль естественного отбора». И, как показывает практика, воспринимается большинством изучающих ее удивительно плохо.

Однажды я за какой-то надобностью набрал в «Яндексе» слово «мутация». И на первом же сайте, где оно употреблялось не в переносном смысле, прочел: «Творческие способности суть генетическая мутация… 50 тысяч лет назад в мозге человека произошло резкое изменение, что в итоге привело к возникновению у него способности создавать нечто оригинальное — ради самой оригинальности». Так вполне серьезный научно-популярный сайт представлял процесс становления не более не менее как человеческого интеллекта. Слово «отбор» в статье не упоминалось вовсе, но нетрудно догадаться, что за отбором было оставлено разве что распространение в популяции случайно возникшего гениального новшества. Бедного «демона Дарвина» в который раз разжаловали из главных конструкторов в дистрибьюторы!

Конечно, это случай крайний — мутациям здесь приписана сверхъестественная способность создавать из ничего сложнейшую психическую функцию, требующую согласованной работы множества отделов и участков мозга. Отсюда уже недалеко до героев цикла рассказов американского фантаста Генри Каттнера — семейки Хогбенов, обретших благодаря мутациям множество чудесных умений, дававших им почти божественное всемогущество. Однако в научной среде до сих пор время от времени обсуждается (правда, в последние десятилетия — в основном кулуарно) идея системных макромутаций, восходящая к «перспективным монстрам» немецкого (впоследствии американского) генетика Рихарда Гольдшмидта. Согласно этой концепции, крупные эволюционные события (становление больших систематических групп, прогрессивное усложнение организации и т. п.) происходят благодаря мутациям, затрагивающим сразу множество признаков и функций организма, разом превращающим его в существо принципиально иной природы.

Такие мутации в самом деле возможны — это изменения в генах, управляющих процессом эмбрионального развития, причем на самых ранних его этапах. Например, нарушив баланс синтеза и инактивации одного-единственного сигнального белка, регулирующего формирование различных структур эмбриона, можно получить вместо человеческого младенца покрытый кожей бесформенный комок живой плоти, не имеющий никаких органов, кроме пупочного канатика, кусочка кишечника и рудиментарного позвоночника. Или, если вывести из строя другой ген, включающийся на более поздних стадиях, вместо обычного поросенка родится существо с двумя пятачками, двумя пастями и тремя глазами. Понятно, однако, что чем сильнее та или иная мутация меняет облик своего обладателя — тем меньше вероятность, что эти изменения приведут к появлению чего-то более совершенного или хотя бы по-своему гармоничного. И если подавляющее большинство обычных, «несистемных» мутаций оказываются вредными или в лучшем случае нейтральными, то можно себе представить, с какой вероятностью может оказаться полезной морфогенетическая катастрофа. Впрочем, даже если бы такое чудо и произошло, у «перспективного монстра» (если он принадлежит к раздельнополому виду) встала бы непростая проблема найти себе брачного партнера.



Остается добавить, что во всех без исключения случаях, когда палеонтологам удавалось более-менее детально проследить становление той или иной группы в истории (а в последние десятилетия это происходит все чаще), никаких «перспективных монстров» в их родословных обнаружить не удавалось[47]. Так что можно лишь подивиться живучести теории, которая продолжает жить в ученых умах, не подкрепляя свои силы ни логическими, ни фактическими аргументами. Так, например, еще в 1990-х — 2000-х годах такие авторитетные исследователи, как Дерек Бикертон и Тимоти Кроу, объясняли глоттогенез, т. е. возникновение человеческого языка: «у кого-то из предков человека появилась генетическая мутация, в результате которой он обрел языковую способность». При этом сторонники такой точки зрения вполне осознавали, что эта единственная мутация должна была (вполне в духе Гольдшмидта) одновременно сформировать речевой аппарат, изменить формы черепа, перестроить мозг, сформировав в нем способность как к распознаванию чужой речи, так и к построению собственной, — и все эти изменения должны быть строго согласованы друг с другом![48]

Но и те, кто понимает, что любая сколько-нибудь сложная структура не могла возникнуть в результате единственной мутации, все равно видят творческое начало эволюции именно в генетических опечатках. Логика их рассуждений на первый взгляд безупречна: отбор не может действовать на то, чего нет. Значит, сколько бы элементарных преобразований нам ни потребовалось, все они все равно возникают как результат мутаций и только затем подвергаются действию отбора. Следовательно, мутации и создают все живые формы, а отбор только отсекает все лишнее.

Но позвольте, кто же тогда автор знаменитой статуи «Давид»? По этой логике им никак не может считаться Микеланджело Буонарроти — ведь он за всю жизнь не создал ни единого кусочка мрамора и, по его собственному признанию, только отсекал все лишнее! А все, из чего состоит «Давид», создали фораминиферы — морские раковинные амебы, чьи бесчисленные домики, спрессовавшись под тяжестью земных пластов, образовали каррарский мрамор. Авторы скульптурного шедевра — одноклеточные?!



Разумеется, эта аналогия (как и любая аналогия) неточна. Еще не прикоснувшись резцом к глыбе мрамора, скульптор уже видит внутренним взором прекрасную статую, которая получится после отсечения от этой глыбы «всего лишнего». У естественного отбора нет никакого внутреннего взора, нет плана или идеала, он не стремится ни к какой наперед намеченной цели и знать не знает, что у него получится из той или иной «заготовки».

И тем не менее именно естественный отбор — единственный конструктивный фактор эволюции: без него все остальные «слагаемые» эволюционного процесса не способны не только создать что-то принципиально новое, но даже воспроизвести то, что однажды было создано отбором. Вспомним феномен псевдо-генов: несколько обратных мутаций (каждая из которых вполне возможна и время от времени происходит) — и организм получил бы ген, который когда-то у него уже был. Но ни одна из требуемых мутаций не приносит пользы без остальных — и отбор не включается. А без него псевдоген обречен на дальнейшую деградацию — мутации никогда не вернут ему утерянный смысл.

Псевдогены — только одно из проявлений общего принципа необратимости эволюции: любое существо, возвращаясь к образу жизни своих эволюционных предков, не восстанавливает имевшиеся у них приспособления, а создает новые. Во всех классах вышедших на сушу позвоночных есть или были формы, вернувшиеся к жизни в воде, — но никто из них не восстановил у себя жабры[49]. Многие птицы независимо друг от друга отказались от полета — но никто не вернулся к четвероногому передвижению, не отрастил на передних конечностях пальцы.

Принцип необратимости эволюции был сформулирован бельгийским палеонтологом Луи Долло еще в 1893 году, но только сейчас мы начинаем понимать причины этой необратимости.

Главная из них — это то, что невозможно отыскать такой «путь назад», на котором каждый шаг мог бы быть поддержан естественным отбором[50].


Возможно, представить себе причины необратимости эволюции будет проще, если посмотреть на расположение букв на клавиатуре вашего компьютера. Вероятно, многие из читателей хоть раз задавались вопросом, почему буквы на ней расположены не по алфавиту, а в таком странном порядке? Дело в том, что первые пишущие машинки, появившиеся в последней трети XIX века, были механически весьма несовершенными и не поспевали за движениями натренированных машинисток: при слишком быстром нажатии двух соседних клавиш их рычажки заклинивали друг друга. В попытках хотя бы минимизировать этот эффект конструкторы искали такое расположение букв, чтобы буквы, чаще всего соседствующие в текстах, оказались далеко друг от друга на клавиатуре. Те раскладки, которые лучше всего соответствовали этому условию — QWERTY для латинского алфавита и ЙЦУКЕН для кириллицы, — и стали в итоге стандартными. Потом машинки стали совершеннее, и рычажки на них сцеплялись уже не так часто, затем возникли электрические машинки, на которых этого не случалось почти никогда, и наконец люди стали печатать на компьютерах, где никаких рычажков уже не было вовсе. Однако на самых современных компьютерных клавиатурах остаются те же раскладки, которые были разработаны для пишущих машинок полуторавековой давности — поскольку слишком трудно было бы переучить сотни миллионов людей на какое-то другое расположение букв.



Можно возразить: мутации ничего не могут сделать без отбора, но ведь и отбор бессилен без мутаций (точнее, без создаваемого ими генетического разнообразия) — вспомним опыты Иогансена. Это верно, но такая «симметрия бессилия» оставляет в тени одно важное различие между этими факторами:

в отличие от мутаций отбор — фактор неслучайный и направленный. Впрочем, как мы уже знаем, в реальных геномах реальных организмов мутации происходят постоянно, так что ситуацию «отбор без мутаций» можно рассматривать лишь для отдельных признаков на протяжении недолгого (в эволюционных масштабах) времени. А в главе 2 мы увидим, что ход и темпы эволюции практически не зависят от интенсивности мутационного процесса.

И все же ставить знак равенства между понятиями «эволюция» и «естественный отбор» (как это часто делается не только в научно-популярных текстах, но даже в статьях и книгах профессиональных биологов) все-таки нельзя. Естественный отбор происходит всегда и везде, где есть живые существа или вообще какие-либо самовоспроизводящиеся структуры. Но не везде и не всегда результатом его неустанной работы становится эволюция, т. е. направленное и закономерное изменение признаков этих существ.

Стабилизирующий отбор: марш на месте
«Вот вы говорите, что человек произошел от обезьяны. А почему же тогда сейчас обезьяны в людей не превращаются?» Этот вопрос вот уже полтора столетия снова и снова задают эволюционистам некоторые наивные люди. Нетрудно убедиться, что ими движет не поиск истины, не благородное сомнение, а исключительно жгучее нежелание признавать себя потомками обезьян. Ведь никто же из них не спрашивает, почему на елках не расцветают цветы (если, как говорят те же ученые, цветковые растения произошли от голосеменных), почему ящерицы не становятся птицами и землеройками или, на худой конец, почему бурые медведи прямо на глазах не превращаются в белых.

Но давайте отнесемся ко всем этим вопросам не как к подначке и провокации, а всерьез. В самом деле, почему мы не видим, как одни виды превращаются в другие? Если, как мы убедились выше, все факторы эволюции — наследственные изменения, борьба за существование, естественный отбор — действуют постоянно и непрерывно, если их действие не прекращается ни на минуту — почему же знакомые нам формы жизни остаются удивительно стабильными? Почему в наших лесах растут все те же березы и елки, рябины и дубы, про которые поется в песнях, сложенных нашими предками, а если и попадется где-нибудь в городском парке неведомое дерево, так можно не сомневаться, что это не результат эволюции, а гость из далеких краев? Почему каждую весну к нам прилетают все те же скворцы и жаворонки, ласточки и соловьи?



«Ну, это-то понятно, — скажет почти всякий, кто помнит, что ему в школе говорили об эволюции. — Эволюционные изменения происходят очень медленно, необходимое для них время несопоставимо со сроками человеческой жизни. Ничего удивительного, что мы их не замечаем».

Такое объяснение кажется убедительным, но оно содержит далеко не всю правду. Как мы уже видели в главе «Отбор в натуре», эволюционные изменения — причем не только выявляемые специальными измерениями, но и вполне наглядные и очевидные — могут происходить довольно быстро, за время жизни всего нескольких поколений эволюционирующей популяции, что в привычных нам понятиях может составлять считаные годы. С другой стороны, речь идет не только о том, что мы можем наблюдать сами или даже о чем можем узнать из исторических источников.

Едва ли не каждое лето по блогам (а иногда и по средствам массовой информации) прокатывается волна паники: то тут, то там перепуганные дачники и прочие отдыхающие находят каких-то не то мутантов, не то пришельцев — странных, ни на кого не похожих тварей. Людей пугает не только экзотический внешний вид этих «монстров» — причудливой формы панцирь, членистое тело, множество ног и несколько хвостов, — но и то, что они возникают словно бы ниоткуда, заводясь в обычных лужах, остающихся после летних ливней. На самом деле речь идет о совершенно безобидном существе — щитне, примитивном пресноводном ракообразном. Никакой тайны в их появлении в лужах нет: заполнение лужи водой запускает развитие дремлющих в грунте яиц щитней. Вышедшие из них личинки стремительно развиваются, превращаются во взрослых рачков, снова откладывают яйца… и погибают, когда лужа пересыхает или (если им повезет дожить до осени) замерзает. Такой образ жизни избавляет щитня от хищников и конкурентов, но спокойным его не назовешь. Однако в такой нестабильной среде щитни ухитрились просуществовать практически без изменений более 200 млн лет — с раннего мезозоя до наших дней. При этом ископаемые останки самого древнего из известных щитней неотличимы от соответствующих структур одного из современных видов. Миновали две геологические эры, биосферу планеты сотрясло немало великих и грозных событий, возникли, процвели и сгинули динозавры, в небе птицы сменили крылатых ящеров, сушу покрыл ковер бесконечно разнообразных цветов, пришли и ушли ужасные эндрюсархи с их огромными зубастыми пастями, подпирающие небеса индрикотерии, ходячие пернатые гильотины — фороракосы и диатримы, где-то в самом конце промелькнули мамонты и саблезубые тигры — а выпавший из эволюции рачок жил-поживал в своих ненадежных убежищах, не обращая внимания на всю эту суету и не меняясь ни на йоту. А ведь в его генах, как и в любых других, шли мутации. И борьбу за существование для него никто не отменял (см. главу «Забытый кит») — в луже можно спрятаться от хищников, паразитов и конкурирующих видов, но от геометрической прогрессии размножения не укроет и она. Почему же он не эволюционировал?



Щитень, конечно, случай крайний и исключительный, своего рода рекорд эволюционной неподвижности. Но видов, которые — насколько можно судить по палеонтологическим данным — не претерпели никаких изменений за последние миллион-другой лет, можно насчитать не так уж мало. Что же — на них не действует естественный отбор?

Давайте вспомним один из самых первых примеров природных селективных процессов, описанных в научной литературе, — воробьев Бампаса. Естественный отбор на них безусловно действовал: он отсекал крайние варианты телосложения (как слишком короткокрылых, так и слишком длиннокрылых), сохраняя среднее и типичное. Понятно, что такой отбор, сколько бы он ни действовал, вряд ли приведет к изменению внешнего облика вида. Скорее наоборот: результатом его длительного действия станет уменьшение разнообразия признаков, «устрожение» видовой нормы и в какой-то мере снижение эволюционного потенциала — способности к изменениям в случае необходимости.

Впрочем, воробьев Бампаса отбирал буран — явление хоть и регулярно происходящее, но все же разовое и экстремальное, так что производимый им отбор вряд ли может быть длительным и стабильным. Однако и самые обычные, постоянные и повседневные условия существования могут обеспечить такой же «отбор без эволюции» — пожалуй, даже вернее, чем природные катастрофы. Скажем, начнешь зацветать раньше — будешь чаще попадать под заморозки, позже — меньше запасов сможешь дать семени. Продлишь сроки беременности — увеличится смертность рожениц, сократишь — чаще будут погибать новорожденные. ...



Все права на текст принадлежат автору: Борис Борисович Жуков.
Это короткий фрагмент для ознакомления с книгой.
Дарвинизм в XXI векеБорис Борисович Жуков