Все права на текст принадлежат автору: Анри Пуанкаре.
Это короткий фрагмент для ознакомления с книгой.
О наукеАнри Пуанкаре

Анри Пуанкаре О науке Перевод с французского Под редакцией Л. С. Понтрягина

От редактора

Одно из самых ярких и глубоких впечатлений моих юных лет связано с работами великого французского ученого Анри Пуанкаре, посвященными научному творчеству и развитию науки. С годами это впечатление не потускнело. Я уверен, что для формирования научной молодежи, творчески работающей в области математики, физики, механики и, разумеется, философии, эти работы имеют непреходящее значение. Да и для всякого, кого волнуют философско-методологические проблемы развития науки, играющей такую важную роль в современном обществе, они полны живейшего интереса.

К сожалению, русские издания книг «Наука и гипотеза», «Ценность науки», «Наука и метод», «Последние мысли», о которых идет речь, давно уже стали библиографической редкостью. Лишь отдельные фрагменты из них были включены в трехтомное издание избранных трудов А. Пуанкаре, вышедшее в 1974 г.

Таковы причины, побудившие меня внести предложение о выпуске сборника упомянутых работ. Эта идея была поддержана Редакционно-издательским советом Академии наук СССР, утвердившим решение о включении сборника в план изданий Главной редакции физико-математической литературы.

В настоящее издание включены целиком книги «Наука и гипотеза» и «Ценность науки». Из книги «Наука и метод» исключен третий раздел, совпадающий со статьей «Динамика электрона», которая вошла в третий том избранных трудов А. Пуанкаре. Из книги «Последние мысли» исключена по той же причине шестая глава «Гипотеза квантов». Зато сборник дополнен докладом «Новая механика», прочитанным Пуанкаре в 1909 г. в Гёттингене, и посмертно изданной его статьей «Новые концепции материи», впервые публикуемой на русском языке (перевод В. К. Сусленко). При издании остальных работ использованы прежние переводы, текстологически обработанные с целью уточнения и исправления отдельных мест, улучшения стилистики и осовременивания русской терминологии. По книгам «Наука и метод» и «Последние мысли» эта работа проведена Т. Д. Блохинцевой и А. С. Шибановым. Что же касается двух первых книг Пуанкаре «Наука и гипотеза» и «Ценность науки», то была использована находившаяся в распоряжении издательства текстологическая обработка их переводов, выполненная ранее С. Г. Суворовым.

Необходимый критический разбор взглядов Пуанкаре с позиций марксистско-ленинской методологии дается в статье М. И. Панова, А. А. Тяпкина и А. С. Шибанова. Он органически соединен с описанием исторической обстановки создания работ Пуанкаре и читается с большим интересом.


Л. С. Понтрягин

Наука и гипотеза

Введение

Для поверхностного наблюдателя научная истина не оставляет места никаким сомнениям: логика науки непогрешима, и если ученые иногда ошибаются, то это потому, что они забывают логические правила.

Математические истины выводятся из небольшого числа очевидных предложений при помощи цепи непогрешимых рассуждений: эти истины присущи не только нам, но и самой природе. Они, так сказать, ставят границы свобод творца и позволяют ему делать выбор только между несколькими относительно немногочисленными решениями. Тогда нескольких опытов будет достаточно, чтобы раскрыть нам, какой выбор им сделан. Из каждого опыта с помощью ряда математических дедукций можно вывести множество следствий, и таким образом каждый из них позволит нам познать некоторый уголок Вселенной.

Вот в таком виде представляется широкой публике или учащимся, получающим первые познания по физике, происхождение научной достоверности. Так они понимают роль опыта и математики. Так же понимали ее сто лет тому назад и многие ученые, мечтавшие построить мир, заимствуя из опыта возможно меньше материала.

Но, вдумавшись, заметили, что математик, а тем более экспериментатор, не может обойтись без гипотезы. Тогда возник вопрос, достаточно ли прочны все эти построения, и явилась мысль, что при малейшем дуновении они могут рухнуть. Быть скептиком такого рода значит быть только поверхностным. Сомневаться во всем, верить всему — два решения, одинаково удобные: и то и другое избавляет нас от необходимости размышлять.

Итак, вместо того чтобы произносить огульный приговор, мы должны тщательно исследовать роль гипотезы; мы узнаем тогда, что она не только необходима, но чаще всего и законна. Мы увидим также, что есть гипотезы разного рода: одни допускают проверку и, подтвержденные опытом, становятся плодотворными истинами; другие, не приводя нас к ошибкам, могут быть полезными, фиксируя нашу мысль, наконец, есть гипотезы, только кажущиеся таковыми, но сводящиеся к определениям или к замаскированным соглашениям.

Последние встречаются главным образом в науках математических и соприкасающихся с ними. Отсюда именно и проистекает точность этих наук; эти условные положения представляют собой продукт свободной деятельности нашего ума, который в этой области не знает препятствий. Здесь наш ум может утверждать, так как он здесь предписывает; но его предписания налагаются на нашу науку, которая без них была бы невозможна, они не налагаются на природу. Однако произвольны ли эти предписания? Нет; иначе они были бы бесплодны. Опыт предоставляет нам свободный выбор, но при этом он руководит нами, помогая выбрать путь, наиболее удобный. Наши предписания, следовательно, подобны предписаниям абсолютного, но мудрого правителя, который советуется со своим государственным советом.

Некоторые были поражены этим характером свободного соглашения, который выступает в некоторых основных началах наук. Они предались неумеренному обобщению и к тому же забыли, что свобода не есть произвол. Таким образом, они пришли к тому, что называется номинализмом, и пред ними возник вопрос, не одурачен ли ученый своими определениями и не является ли весь мир, который он думает открыть, простым созданием его прихоти[1]. При таких условиях наука была бы достоверна, но она была бы лишена значения.

Если бы это было так, наука была бы бессильна. Но мы постоянно видим перед своими глазами ее плодотворную работу. Этого не могло бы быть, если бы она не открывала нам чего-то реального; но то, что она может постичь, не суть вещи в себе, как думают наивные догматики, а лишь отношения между вещами; вне этих отношений нет познаваемой действительности.

Таково заключение, к которому мы придем; но для этого нам придется подвергнуть беглому обзору ряд наук от арифметики и геометрии до механики и экспериментальной физики.

Какова природа умозаключения в математике? Действительно ли она дедуктивна, как думают обыкновенно? Более глубокий анализ показывает нам, что это не так, — что в известной мере ей свойственна природа индуктивного умозаключения и потому-то она столь плодотворна. Но от этого она не теряет своего характера абсолютной строгости, что прежде всего мы и покажем.

Познакомившись ближе с одним из орудий, которые математика дает в руки естествоиспытателя, мы обратимся к анализу другого основного понятия — понятия математической величины. Находим ли мы ее в природе или сами вносим ее в природу? И в последнем случае не подвергаемся ли мы риску все извращать? Сличая грубые данные наших чувств и то крайне сложное и тонкое понятие, которое математики называют величиной, мы вынуждены признать их различие; следовательно, эту раму, в которую мы хотим заключить все, создали мы сами; но мы создали ее не наобум, мы создали ее, так сказать, по размеру и потому-то мы можем заключать в нее явления, не искажая в существенном их природы.

Другая рама, которую мы налагаем на мир, — это пространство. Откуда происходят первоначальные принципы геометрии? Предписываются ли они логикой? Лобачевский, создав неевклидовы геометрии, показал, что нет. Не открываем ли мы пространства при помощи наших чувств? Тоже нет, так как то пространство, которому могут научить нас наши чувства, абсолютно отлично от пространства геометра. Проистекает ли вообще геометрия из опыта? Глубокое исследование покажет нам, что нет. Мы заключим отсюда, что эти принципы суть положения условные; но они не произвольны, и если бы мы были перенесены в другой мир (я называю его неевклидовым миром и стараюсь изобразить его), то мы остановились бы на других положениях.

В механике мы придем к аналогичным заключениям и увидим, что принципы этой науки, хотя и более непосредственно опираются на опыт, все-таки еще разделяют условный характер геометрических постулатов. До сих пор преобладает номинализм; но вот мы приходим к физическим наукам в собственном смысле. Здесь картина меняется; мы встречаем гипотезы иного рода и видим всю их плодотворность. Без сомнения, они с первого взгляда кажутся нам хрупкими, и история науки показывает нам, что они недолговечны; но они не умирают целиком, и от каждой из них нечто остается. Это нечто и надо стараться распознать, потому что здесь, и только здесь, лежит истинная реальность.

Метод физических наук основывается на индукции, заставляющей нас ожидать повторения какого-нибудь явления, когда воспроизводятся обстоятельства, при которых оно произошло в первый раз. Если бы могли повториться вместе все эти обстоятельства, то этот принцип мог бы быть применим без всякого опасения; но этого никогда не случится: всегда некоторые из обстоятельств будут отсутствовать. Абсолютно ли мы уверены, что они не имеют значения? Конечно, нет. Это может быть вероятно, но не может быть строго достоверно. Отсюда — значительная роль, которую играет в физических науках понятие вероятности. Таким образом, исчисление вероятностей не есть только забава или руководство для игроков в баккара, и мы должны стараться точнее обосновать его принципы. В этом отношении я мог дать лишь неполные результаты, поскольку тот неясный инстинкт, который руководит нами при решении вопроса о вероятности, мало поддается анализу.

Изучив условия, в которых работает физик, я счел нужным показать его за работой. Для этого я взял несколько примеров из истории оптики и электричества. Мы увидим, откуда вышли идеи Френеля, Максвелла и какие гипотезы бессознательно создавали Ампер и другие основатели электродинамики.

Часть I Число и величина

Глава I О природе математического умозаключения

I
Самая возможность математического познания кажется неразрешимым противоречием. Если эта наука является дедуктивной только по внешности, то откуда у нее берется та совершенная строгость, которую никто не решается подвергать сомнению? Если, напротив, все предложения, которые она выдвигает, могут быть выведены один из других по правилам формальной логики, то каким образом математика не сводится к бесконечной тавтологии? Силлогизм не может нас научить ничему существенно новому, и если все должно вытекать из закона тождества, то все также должно к нему и приводиться. Но неужели возможно допустить, что изложение всех теорем, которые заполняют столько томов, есть не что иное, как замаскированный прием говорить, что A есть A!

Конечно, можно добраться до аксиом, которые лежат в источнике всех этих рассуждений. И если, с одной стороны, держаться того мнения, что их нельзя свести к закону противоречия, с другой — не желать видеть в них только факты опыта, которые не могли бы обладать характером математической необходимости, то имеется еще надежда отнести их к числу синтетических априорных суждений. Но это не значит разрешить затруднение; это значит только дать ему название: даже если бы природа синтетических суждений перестала быть для нас тайной, все же противоречие не было бы устранено, оно было бы только отодвинуто; силлогистическое умозаключение неспособно прибавить что-либо к тем данным, которые ему предоставляются; эти данные сводятся к нескольким аксиомам, и, кроме них, ничего нового нельзя было бы найти в заключениях.

Никакая теорема не должна была бы являться новой, если в ее доказательство не входила бы новая аксиома; умозаключение могло бы только возвращать нам истины, непосредственно очевидные, имеющие источником интуицию; оно являлось бы только промежуточным пустословием. Тогда, пожалуй, возник бы вопрос: не служит ли вообще силлогистический аппарат единственно для того, чтобы маскировать делаемые нами заимствования?

Противоречие поразит нас еще больше, если мы откроем какую-нибудь математическую книгу: на каждой странице автор будет выражать намерение обобщить уже известную теорему. Значит ли это, что математический метод ведет от частного к общему, и каким образом можно называть его тогда дедуктивным?

Наконец, если бы наука о числе была чисто аналитической или могла вытекать аналитически из небольшого числа синтетических суждений, то достаточно сильный ум мог бы, по-видимому, с первого взгляда заметить все содержащиеся в них истины; более того: можно было бы даже надеяться, что когда-нибудь для их выражения будет изобретен язык настолько простой, что эти истины будут непосредственно доступны и заурядному уму.

Если отказаться от допущения этих выводов, то необходимо придется признать, что математическое умозаключение само в себе заключает род творческой силы и что, следовательно, оно отличается от силлогизма.

И отличие это должно быть глубоким. Так, например, мы не найдем ключа к тайне в многократном применении того правила, по которому одна и та же операция, одинаково примененная к двум равным числам, дает тождественные результаты.

Все эти формы умозаключения — все равно, приводимы ли они к силлогизму в собственном смысле или нет, — сохраняют аналитический характер и поэтому являются бессильными.

II
Вопросы этого рода обсуждаются давно. Еще Лейбниц пытался доказать, что 2 да 2 составляют 4; рассмотрим вкратце его доказательство.

Я предполагаю, что определены число 1 и операция x + 1, состоящая в прибавлении 1 к данному числу x. Эти определения, каковы бы они ни были, не будут входить в последующие рассуждения.

Я определяю затем числа 2, 3 и 4 равенствами:

(1) 1 + 1 = 2; (2) 2 + 1 = 3; (3) 3 + 1 = 4.

Я определяю также операцию x + 2 соотношением

(4) x + 2 = (x + 1) + 1.

Установив это, мы имеем

2 + 2 = (2 + 1) + 1 (определение (4)),
(2 + 1) + 1 = 3 + 1 (определение (2)),
3 + 1 = 4 (определение (3)),
откуда

2 + 2 = 4 (что и требовалось доказать).

Нельзя отрицать того, что это рассуждение является чисто аналитическим. Но спросите любого математика, и он вам скажет: «Это, собственно говоря, не доказательство, а проверка». Мы просто ограничились сближением двух чисто условных определений и констатировали их тождество; ничего нового мы не узнали. Проверка тем именно и отличается от истинного доказательства, что, будучи чисто аналитической, она остается бесплодной. Она бесплодна, потому что заключение есть только перевод предпосылок на другой язык. Истинное же доказательство наоборот, плодотворно, ибо в нем заключение является в некотором смысле более общим, чем посылки.

Равенство 2 + 2 = 4 могло подлежать проверке только потому, что оно является частным случаем. Всякое частное выражение в математике всегда может быть таким образом проверено. Но если бы математика должна была сводиться к ряду таких проверок, то она не была бы наукой. Ведь шахматист, например, не создает еще науки тем, что он выигрывает партию. Всякая наука есть наука об общем.

Можно даже сказать, что точные науки имеют своей задачей избавить нас от необходимости таких прямых проверок.

III
Итак, посмотрим на математика за его делом и постараемся объяснить себе успешность его приемов. Задача эта не лишена трудностей; недостаточно открыть случайно попавшееся сочинение и проанализировать там какое-нибудь доказательство.

Мы должны прежде всего исключить геометрию, где вопрос усложняется трудными задачами, относящимися к роли постулатов, к природе и к происхождению понятия пространства. По аналогичным основаниям мы не можем обращаться и к анализу бесконечно малых. Нам надо искать математическую мысль там, где она осталась чистой, т. е. в арифметике.

Надо еще продолжить отбор; в высших отделах теории чисел первоначальные математические понятия подверглись столь глубокой разработке, что становится трудно их анализировать.

Следовательно, именно в началах арифметики мы должны надеяться найти искомое объяснение; но как раз в доказательстве наиболее элементарных теорем авторы классических сочинений обнаружили меньше всего точности и строгости. Не надо ставить им это в вину; они подчинялись необходимости; начинающие не подготовлены к настоящей математической строгости; они усмотрели бы в ней только пустые и скучные тонкости; было бы бесполезной тратой времени пытаться скорее внушить им большую требовательность; надо, чтобы они быстро, без остановок, прошли путь, который некогда медленно проходили основатели науки.

Почему же нужна столь продолжительная подготовка, чтобы привыкнуть к этой совершенной строгости, которая, кажется, должна была бы быть от природы присущей всякому нормальному уму? Это логическая и психологическая проблема, которая достойна обсуждения.

Но мы не будем останавливаться на ней; она является посторонней для нашего предмета. Я буду лишь помнить, что нам надо, из опасения не достигнуть цели, привести заново доказательства наиболее элементарных теорем и вместо той грубой формы, которую им придают, чтобы не утомить начинающих, придать такую, которая может удовлетворить ученого-математика.

Определение сложения. Я предполагаю, что предварительно была определена операция x + 1, состоящая в прибавлении числа 1 к данному числу х. Это определение, каково бы оно ни было, не будет играть никакой роли в последующих рассуждениях.

Дело идет теперь об определении операции х + а, состоящей в прибавлении числа a к данному числу х.

Предположим, что определена операция

x + (a — 1).

Тогда операция х + а будет определена равенством

х + а = [x + (a — 1)] + 1. (1)
Таким образом, мы узнаем, что такое х + а, когда будем знать, что такое x + (a — 1); а так как я вначале предположил, что известно, что такое x + 1, то можно определить последовательными «рекурренциями» операции x + 2, x + 3 и т. д.[2]

Это определение заслуживает некоторого внимания, так как оно имеет особенную природу, отличающую его от определения чисто логического; в самом деле, равенство (1) содержит бесчисленное множество различных определений, и каждое из них имеет смысл только тогда, когда известно другое, ему предшествующее.

Свойства сложения. Ассоциативность. Я утверждаю, что

a + (b + c) = (a + b) + c.

В самом деле, теорема справедлива для c = 1, в этом случае она изображается равенством

a + (b + 1) = (а + b) + 1.

А это — помимо различия в обозначениях — есть не что иное, как равенство (1), при помощи которого я только что определял сложение.

Предположим, что теорема будет справедлива для c = γ; я говорю, что она будет справедлива и для c = γ + 1; пусть, в самом деле,

(a + b) + γ = a + (b + γ);

отсюда следует

[(a + b) + γ] + 1 = [a + (b + γ)] + 1

или в силу определения (1)

(a + b) + (γ + 1) = a + (b + γ + 1) = a + [b + (γ + 1)],

а это показывает с помощью ряда чисто аналитических выводов, что теорема верна для γ + 1.

Но так как она верна для c = 1, то последовательно усматриваем, что она верна для c = 2, для c = 3 и т. д.

Коммутативность. 1. Я утверждаю, что

a + 1 = 1 + a.

Теорема, очевидно, справедлива для a = 1; путем чисто аналитических рассуждений можно проверить, что если она справедлива для а = y, то она будет справедлива для a = γ + 1; но раз она справедлива для a = 1, то она будет справедлива и для a = 2; для a = 3 и т. д.; это выражают, говоря, что высказанное предложение доказано путем рекурренции.

2. Я утверждаю, что

а + b = b + а.

Теорема только что была доказана для b = 1; можно аналитически проверить, что если она справедлива для b = β, то она будет справедлива для b = β + 1.

Таким образом, предложение доказано путем рекурренции.

Определение умножения. Мы определим умножение при помощи равенств

a × 1 = a,

a × b = [a × (b — 1)] + a. (2)
Равенство (2), как и равенство (1), заключает в себе бесчисленное множество определений; после того как дано определение a × 1, оно позволяет определить пси следовательно a × 2, a × 3 и т. д.

Свойства умножения. Дистрибутивность. Я утверждаю, что

(а + b) × c = (а × с) + (b × с).

Мы проверяем аналитически справедливость этого равенства для c = 1; а потом проверяем, что если теорема справедлива для с = y, то она будет справедлива и для c = γ + 1.

Предложение опять доказано рекурренцией.

Коммутативность. 1. Я утверждаю, что

a × 1 = 1 × а.

Теорема очевидна для a = 1.

Проверяем аналитически, что если она справедлива для a = α, то она будет справедлива и для a = α + 1.

2. Я утверждаю, что

а × b = b × а.

Теорема только что была доказана для b = 1. Аналитически проверяем, что если она справедлива дли b = β, то она будет справедлива и для b = β +1

IV
Здесь я прерываю этот монотонный ряд рассуждений. Но именно эта монотонность и способствовала лучшему выделению того однообразного процесса, который мы находим на каждом шагу.

Этот процесс есть доказательство путем рекурренции. Сначала формулируется теорема для n = 1; при этом доказывается, что если она справедлива для n — 1, то она справедлива и для n, и отсюда выводится заключение о справедливости ее для всех целых чисел.

Мы только что видели, как можно воспользоваться этим для доказательства правил сложения и умножения, т. е. правил алгебраического вычисления; это вычисление есть орудие преобразования, которое применяется в гораздо большем числе разнообразных комбинаций, чем простой силлогизм; но это орудие еще чисто аналитическое, оно неспособно научить нас ничему новому. Если бы математика не имела ничего другого, она тотчас же остановилась бы в своем развитии; но она получает новое средство в том же процессе, т. е. в рассуждении путем рекурренции, и потому может непрерывно продолжать свое поступательное движение.

В каждом шаге, если его хорошенько рассмотреть, мы находим этот способ рассуждения — или в той простой форме, которую мы только что ему придали, или в форме более или менее видоизмененной.

В нем, следовательно, по преимуществу заключается математическое рассуждение, и нам следует изучить его ближе.

V
Существенная черта умозаключения путем рекурренции заключается в том, что оно содержит в себе бесчисленное множество силлогизмов, сосредоточенных, так сказать, в одной формуле.

Чтобы лучше можно было себе это уяснить, я сейчас расположу эти силлогизмы один за другим в виде некоторого каскада. Это, в сущности, — гипотетические силлогизмы.

Теорема верна для числа 1.

Если же она справедлива для 1, то она справедлива для 2.

Следовательно, она верна для 2.

Если же она верна для 2, то она верна для 3.

Следовательно, она верна для 3 и т. д.

Очевидно, что заключение каждого силлогизма служить следующему меньшей посылкой.

Большие посылки всех наших силлогизмов могут быть приведены к одной формуле:

Если теорема справедлива для n — 1, то она справедлива для n.

Таким образом, очевидно, что в рассуждении путем рекурренции ограничиваются выражением меньшей посылки первого силлогизма и общей формулы, которая в виде частных случаев содержит в себе все большие посылки.

Этот никогда не оканчивающийся ряд силлогизмов оказывается приведенным к одной фразе в несколько строк.

Теперь легко понять, почему всякое частное следствие, вытекающее из теоремы, может быть, как я изложил выше, проверено чисто аналитическим процессом.

Если, вместо того чтобы доказывать справедливость нашей теоремы для всех чисел, мы желаем обнаружить ее справедливость, например, только для числа 6, для нас будет достаточно обосновать 5 первых силлогизмов нашего последовательного ряда; если бы мы пожелали доказать теорему для числа 10, надо было бы взять их 9; для большого числа надо было бы взять их еще больше; но как бы велико ни было это число, мы всегда в конце концов его достигли бы, и аналитическая проверка была бы возможна.

Однако как бы далеко мы ни шли, мы никогда не могли бы дойти до общей применимой ко всем числам теоремы, которая одна только и может быть предметом науки. Чтобы ее достигнуть, понадобилось бы бесконечно большое число силлогизмов — нужно перескочить бездну, которую никогда не будет в состоянии заполнить терпение аналитика, ограниченное одними средствами формальной логики.

Вначале я поставил вопрос, почему нельзя было бы вообразить ум, достаточно мощный для того, чтобы сразу подметить всю совокупность математических истин.

Ответ теперь нетруден; шахматный игрок может рассчитать вперед четыре, пять ходов, но, каким бы необыкновенным его ни представляли, он всегда предусмотрит только конечное число ходов; если он применит свои способности к арифметике, то он не будет в состоянии подметить в ней общих истин путем одной непосредственной интуиции; он не будет в состоянии обойтись без помощи рассуждения путем рекурренции при доказательстве самой незначительной теоремы, ибо это и есть то орудие, которое позволяет переходить от конечного к бесконечному.

Это орудие всегда полезно, ибо оно позволяет нам сразу пройти любое число ступеней и избавляет нас от долгих, скучных и однообразных проверок, которые скоро стали бы практически невыполнимыми. Но оно делается неизбежным, раз мы имеем в виду общую теорему, к которой аналитическая проверка нас непрерывно приближала бы, никогда не позволяя ее достигнуть.

В этой области арифметики кто-нибудь, пожалуй, счел бы себя далеким от анализа бесконечно малых; между тем мы сейчас видели, что идея математической бесконечности уже здесь играет весьма важную роль, и без нее не было бы арифметики как науки, так как не было бы идеи общего.

VI
Суждение, на котором основан способ рекурренций, может быть изложено в других формах; можно сказать, например, что в бесконечно большом собрании различных целых чисел всегда есть одно, которое меньше всех других. Можно легко переходить от одного выражения к другому и таким образом создавать иллюзию доказательства законности рассуждения путем рекурренции. Но в конце концов всегда придется остановиться; мы всегда придем к недоказуемой аксиоме, которая, в сущности, будет не что иное, как предложение, подлежащее доказательству, но только переведенное на другой язык.

Таким образом, нельзя не прийти к заключению, что способ рассуждения путем рекурренции несводим к закону противоречия.

Это правило не может происходить и из опыта; опыт нас может научить только тому, что это правило справедливо, например, для 10, для 100 первых чисел; он не может простираться на бесконечный ряд чисел, а лишь на большую или меньшую часть этого ряда, всегда ограниченную.

Если бы дело шло только об этом, закон противоречия был бы достаточен — он всегда позволил бы нам развить столько силлогизмов, сколько мы желаем; лишь когда дело идет об охвате бесконечности одной формулой, лишь перед бесконечным рушится этот закон; но там становится бессилен и опыт. Это правило, недоступное ни для аналитического, ни для опытного доказательства, есть истинный образец синтетического априорного суждения. С другой стороны, нельзя видеть в нем только соглашение, как в некоторых постулатах геометрии.

Почему же это суждение стоит перед нами с непреодолимой очевидностью? Здесь сказывается только утверждение могущества разума, который способен постичь бесконечное повторение одного и того же акта, раз этот акт оказался возможным однажды. В силу этого могущества разум обладает непосредственной интуицией, а опыт может быть для него только поводом воспользоваться ею и осознать ее.

Но скажут: если чистый опыт не может оправдать суждения путем рекурренции, то будет ли то же самое относительно опыта, поддерживаемого индукцией? Мы последовательно видим, что теорема верна для чисел 1, 2, 3 и т. д.; мы говорим: закон очевиден, и присваиваем ему тот же ранг, какой свойствен всякому физическому закону, опирающемуся на наблюдения, число которых очень велико, но все же ограничено.

Нельзя не признать, что здесь существует поразительная аналогия с обычными способами индукции. Однако есть и существенное различие. Индукция, применяемая в физических науках, всегда недостоверна, потому что она опирается на веру во всеобщий порядок Вселенной — порядок, который находится вне нас. Индукция математическая, т. е. доказательство путем рекурренции, напротив, представляется с необходимостью, потому что она есть только подтверждение одного из свойств самого разума.

VII
Выше я сказал, что математики стараются всегда обобщать полученные ими предложения; например, мы только что доказали равенство

a + 1 = 1 + a,

а затем воспользовались им для обоснования равенства

a + b = b + a,

которое, очевидно, является более общим.

Таким образом, математика, как и другие науки, может идти от частного к общему.

Это — факт, который в начале этого сочинения казался нам непонятным, но который теряет всю таинственность для нас, после того как была установлена аналогия между доказательством путем рекурренции и между обычной индукцией.

Нет сомнения, что математическое рассуждение посредством рекурренции и индуктивное физическое рассуждение покоятся на различных основаниях; но ход их параллелен — они движутся в том же направлении, т. е. от частного к общему.

Рассмотрим это несколько ближе. Чтобы доказать равенство

a + 2 = 2 + a,

нам достаточно применить два раза правило

a + 1 = 1 + a (1)
и написать

a + 2 = a + 1 + 1 = 1 + a + 1 = 1 + 1 + a = 2 + a. (2)
Однако равенство (2), выведенное таким образом чисто аналитически из равенства (1), не есть просто его частный случай: это нечто иное.

Поэтому нельзя сказать, что мы даже в действительно аналитической и дедуктивной части математических рассуждений двигались от общего к частному в обычном смысле слова.

Два члена равенства (2) суть просто сочетания, более сложные, чем два члена равенства (1), и анализ служит только для отделения элементов, которые входят в эти сочетания, и для изучения их соотношений.

Следовательно, математики действуют, применяя процесс «конструирования»; они «конструируют» сочетания все более и более сложные. Возвращаясь затем путем анализа этих сочетаний — этих, так сказать, совокупностей — к их первоначальным элементам, они раскрывают отношения этих элементов и выводят отсюда отношения самих совокупностей.

Это — процесс чисто аналитический, однако он направлен не от общего к частному, ибо совокупности, очевидно, не могут быть рассматриваемы как нечто более частное, чем их составные элементы.

Этому процессу «конструирования» справедливо приписывали большое значение и желали в нем видеть необходимое и достаточное условие прогресса точных наук.

Несомненно, что оно необходимо; но оно не является достаточным.

Для того чтобы конструирование могло быть полезным, чтобы оно не было бесплодным трудом для разума, чтобы оно могло служить опорой для дальнейшего поступательного движения, надо, чтобы оно прежде всего обладало некоторым родом единства, которое позволяло бы видеть в нем нечто иное, чем простое наращивание составных частей. Говоря точнее, надо, чтобы в анализе конструкции выявлялось некоторое преимущество сравнительно с анализом ее составных элементов.

В чем же может заключаться это преимущество?

Зачем, например, надо рассуждать не об элементарных треугольниках, а о многоугольнике, который ведь всегда разложим на треугольники?

Это делается потому, что существуют свойства, принадлежащие многоугольникам с каким угодно числом сторон, которые можно непосредственно применить к любому частному многоугольнику.

Весьма часто, напротив, только ценой продолжительных усилий можно бывает найти эти свойства, изучая непосредственно соотношения элементарных треугольников. Знание общей теоремы освобождает нас от этих усилий.

Если четырехугольник есть не что иное, чем соединенные рядом два треугольника, то это потому, что он принадлежит к роду многоугольников.

Конструирование становится интересным только тогда, когда его можно сравнить с другими аналогичными конструкциями, образующими виды того же родового понятия.

Необходимо еще, чтобы было возможно доказывать родовые свойства, не будучи вынужденным обосновывать их последовательно для каждого вида.

Чтобы достигнуть этого, необходимо вновь подняться от частного к общему, пройдя одну или несколько ступеней.

Аналитический процесс «конструирования» не вынуждает нас опускаться ниже, а оставляет все на том же уровне.

Мы можем подняться выше только благодаря математической индукции, которая одна может научить нас чему-либо новому. Без помощи такой индукции, отличной в известных отношениях от индукции физической, но столь же плодотворной, как и последняя, процесс конструирования был бы бессилен создать науку.

Заметим, наконец, что эта индукция возможна только тогда, когда одна и та же операция может повторяться бесконечное число раз. Вот причина, почему теория шахматной игры никогда не может стать наукой; там различные ходы одной и той же партии не похожи друг на друга.

Глава II Математическая величина и опыт

Если вы хотите знать, что понимают математики под непрерывностью, то ответа следует спрашивать не у геометра. Геометр всегда так или иначе старается представить себе фигуры, которые он изучает, но его представления являются для него только орудием; занимаясь геометрией, он употребляет пространство так же, как употребляет мел; поэтому следует остерегаться приписывать слишком большое значение случайностям, которые часто имеют не больше значения, чем белизна мела.

Чистому аналитику нечего бояться этой опасности. Он освободил математическую науку от всех посторонних элементов и может ответить на ваш вопрос: что представляет собой на самом деле та непрерывность, о которой рассуждают математики? Многие из них, умеющие размышлять о своей науке, уже сделали это, как например Таннери в своем «Введении в теорию функций одной переменной».

Будем исходить из последовательности целых чисел; между двумя соседними числами вставим одно или несколько промежуточных чисел, потом между этими числами вставим еще новые и так далее до бесконечности. Мы будем иметь, таким образом, неограниченное число членов: это будут числа, называемые дробно-рациональными или соизмеримыми. Но этого еще недостаточно; между этими членами, число которых однако уже бесконечно, надо вставить еще другие, так называемые иррациональные или несоизмеримые.

Прежде чем идти дальше, сделаем одно важное замечание. Непрерывность, понимаемая таким образом, есть не более чем собрание отдельных единиц, расположенных в известном порядке, правда, в бесконечном числе, но внешних друг другу. Это не соответствует обычной концепции, которая между элементами непрерывного предполагает некоторый род внутренней связи, составляющей из них целое, — где не точка предшествует существованию линии, а линия предшествует существованию точки. От знаменитой формулы: непрерывность есть единство во множественности — остается только множественность; единство исчезло. Это обстоятельство не лишает аналитиков основания определять свою непрерывность так, как они это делают, ибо, рассуждая именно об этом, они постоянно спорят друг с другом по поводу строгости. Но для нас достаточно указать, что настоящая математическая непрерывность есть нечто совсем иное, чем непрерывность физиков или непрерывность метафизиков.

Быть может, скажут, что математики, которые довольствуются этим определением, обмануты словами, что надо было бы точно сказать, что представляет собой каждый из промежуточных членов, выяснить, как надо их вставить, и показать, что эта операция возможна. Но это было бы несправедливо; единственным свойством этих членов, входящим в рассуждения о них[3], является свойство находиться прежде или после таких-то других членов; поэтому оно только и должно входить в их определение.

Таким образом, нечего беспокоиться о том, каким способом следует вставлять промежуточные члены; с другой стороны, никто не усомнится, что эта операция возможна, если только не забывать, что это последнее слово на математическом языке означает просто: свободна от противоречия.

Все же наше определение непрерывности не полно, и я возвращаюсь к нему после этого слишком длинного отступления.

Определение несоизмеримых величин. Математики Берлинской школы, и в частности Кронекер, занимаются построением этой непрерывной последовательности дробных и иррациональных чисел, не пользуясь никаким другим материалом, кроме целого числа. С этой точки зрения математическая непрерывность явится чистым созданием разума, в котором опыт совершенно не участвует.

Понятие рационального числа для них не представляет затруднения; предметом их особенных усилий служит определение несоизмеримого числа. Но прежде чем воспроизвести здесь это определение, я должен сделать одно замечание, чтобы предупредить удивление, которое оно не замедлило бы вызвать у читателей, мало знакомых с математическими обычаями.

Математики изучают не предметы, а лишь отношения между ними; поэтому для них безразлично, будут ли одни предметы замещены другими, лишь бы только не менялись их отношения. Для них не важно материальное содержание; их интересует только форма.

Кто забудет это, тот не поймет, что Дедекинд под именем несоизмеримого числа разумеет простой символ, т. е. нечто, совершенно отличное от представления, которое создают себе обыкновенно относительно величины, считая ее измеряемой, почти осязаемой.

Итак, вот каково определение Дедекинда: соизмеримые числа могут быть бесконечным числом способов распределены на два класса при соблюдении условия, что любое число первого класса должно быть больше любого числа второго класса.

Может случиться, что между числами первого класса будет одно, которое меньше всех других; например, если поместим в первый класс все числа, большие чем 2, и само 2, а во второй класс — все числа, меньшие чем 2, то ясно, что 2 будет наименьшее из всех чисел первого класса. Число 2 может быть принято в качестве символа этого распределения.

Можно представить себе, напротив, что между числами второго класса имеется одно, большее всех других; так, это имеет место, если первый класс заключает все числа, большие чем 2, а второй — все числа, меньшие чем 2, и само 2. Здесь опять число 2 могло бы быть избрано как символ этого распределения.

Но может также случиться, что нельзя будет найти ни в первом классе число, меньшее чем все другие, ни во втором — число, большее чем все другие. Предположим, например, что в первом классе помещают все соизмеримые числа, квадрат которых больше чем 2, а во втором все те, квадрат которых меньше чем 2. Известно, что нет такого числа, квадрат которого в точности был бы равен 2. И в первом классе не будет, очевидно, числа, меньшего чем все другие, потому что, как бы ни был квадрат некоторого числа близок к 2, всегда можно найти соизмеримое число, квадрат которого будет еще ближе к 2.

С точки зрения Дедекинда, несоизмеримое число

√2

есть не что иное, как символ этого особого способа распределения соизмеримых чисел; таким образом, каждому способу распределения соответствует одно число — соизмеримое или несоизмеримое, — которое и служит символом распределения.

Но удовольствоваться этим значило бы совсем забыть о происхождении этих символов; остается еще выяснить, каким образом математики пришли к тому, что приписали им особого рода конкретное существование, и, с другой стороны, не появляется ли трудность уже и в отношении дробных чисел? Могли бы мы иметь понятие об этих числах, если бы заранее не знали о материи, которую мы понимаем как нечто делимое до бесконечности, т. е. как непрерывность?

Физическая непрерывность. Итак возникает вопрос, не заимствовано ли понятие математической непрерывности просто из опыта. Если бы это было так, то это означало бы, что данные непосредственного опыта, каковыми являются наши ощущения, доступны измерению.

Может явиться искушение поверить, что это и в самом деле так, потому что в последнее время пытались измерить их, и был даже сформулирован закон, известный под именем закона Фехнера, по которому ощущение пропорционально логарифму раздражения.

Но если ближе присмотреться к опытам, которыми пытались обосновать этот закон, то можно прийти к совершенно противоположному заключению. Например, было замечено, что вес A, равный 10 граммам, и вес B, равный 11 граммам, производят тождественные ощущения, что вес B нельзя отличить от веса C, равного 12 граммам; но что вес A можно легко отличить от веса C. Таким образом, непосредственные результаты опыта могут быть выражены следующими соотношениями:

A = B, B = C, A < C,

которые можно рассматривать как формулу физической непрерывности. Эта формула заключает в себе недопустимое разногласие с законом противоречия; необходимость избежать его и заставила нас изобрести идею математической непрерывности.

Итак, необходимо заключить, что это понятие всецело создано разумом, но что опыт доставил ему повод для этого.

Мы не можем допустить, что два количества, равные одному и тому же третьему, не равны между собой; и это обстоятельство вынуждает нас предположить, что A отличается от B и B от C, но несовершенство наших чувств не позволило нам этого заметить.

Создание математической непрерывности. Первая стадия. До сих пор, чтобы изобразить действительность, нам достаточно было бы вставить между A и B небольшое число отдельных членов. Но что произойдет, если мы для возмещения несовершенства наших чувств прибегнем к какому-нибудь инструменту, например, если мы воспользуемся микроскопом? Члены A и B, которых ранее мы не могли отличить друг от друга, теперь нам представятся различными, но между A и B, которые стали различимыми, поместится новый член D, который мы не будем в состоянии отличить ни от A ни от B. Несмотря на употребление самых совершенных методов, непосредственные результаты нашего опыта будут всегда сохранять свойства физической непрерывности с присущим ей противоречием.

Мы освободимся от этого противоречия только тем, что будем беспрестанно помещать новые члены между членами, уже различенными, и эта операция должна будет продолжаться до бесконечности. Мы могли бы подумать, что она будет остановлена, если мы представим себе некое орудие, достаточно мощное для разложения физической непрерывности на раздельные элементы, подобно тому как телескоп разлагает Млечный Путь на звезды. Но мы не можем так думать. В самом деле, инструментами мы пользуемся всегда при помощи наших чувств; так, увеличенное микроскопом изображение мы рассматриваем нашим глазом, следовательно, оно должно всегда сохранять характер зрительного ощущения, а потому сохранять и характер физической непрерывности.

Длина, рассматриваемая непосредственно, ничем не отличается от половины этой длины, удвоенной микроскопом. Целое однородно с частью; здесь заключается новое противоречие, или скорее это было бы противоречием, если бы число членов предполагалось конечным; в самом деле, ясно, что часть, которая содержит менее членов сравнительно с целым, не может быть подобной целому.

Противоречие снимается лишь тогда, когда число членов рассматривается как бесконечное; ничто, например, не мешает рассматривать совокупность целых чисел подобной совокупности четных чисел, которая представляет собою однако только часть всего ряда; в самом деле, каждому целому числу соответствует в этом ряду одно четное число, которым является то же число, увеличенное вдвое.

Однако разум приходит к созданию понятия о непрерывном, образованном из бесконечного числа членов, не только для того, чтобы избавиться от этого противоречия, содержащегося в эмпирических данных.

Дело обстоит совершенно так же, как для ряда целых чисел. Мы обладаем способностью понять, что единица может быть прибавлена к собранию единиц; благодаря опыту мы имеем повод упражнять эту способность и сознавать ее: но с этого момента мы чувствуем, что наше могущество не имеет предела и что мы могли бы считать бесконечно, хотя бы и имели для счета всегда только конечное число предметов.

Точно так же, как только мы пришли к идее поместить между двумя последовательными членами некоторого ряда промежуточные члены, мы пришли к выводу, что эта операция может быть продолжена беспредельно и что нет, так сказать, никакого существенного основания для остановки.

Я позволю себе упростить речь, назвав математической непрерывностью первого порядка всякую совокупность членов, образованных по тому же закону, что и последовательность соизмеримых чисел. Если мы затем поместим в ней новые промежуточные члены, следуя закону образования несоизмеримых чисел, мы получим то, что мы назовем непрерывностью второго порядка.

Вторая стадия. До сих пор мы сделали только первый шаг: мы объяснили происхождение непрерывностей первого порядка; теперь надо убедиться, почему их было еще недостаточно и почему понадобилось изобретать несоизмеримые числа.

Если мы хотим представить себе линию, то это возможно сделать, только пользуясь свойствами физической непрерывности; т. е. ее можно представить себе не иначе, как обладающей некоторой шириной. Две линии явятся для нас тогда в форме двух узких полос, и если удовольствоваться этим грубым изображением, то очевидно, что при пересечении две линии будут иметь общую часть.

Но чистый геометр делает еще одно усилие: не отказываясь совершенно от помощи своих чувств, он хочет дойти до понятия линии без ширины, точки без протяжения. Он может достичь этого, только рассматривая линию как предел, к которому стремится полоса, все более и более суживающаяся, и точку — как предел, к которому стремится площадь, все более и более уменьшающаяся. Тогда наши две полосы, как бы узки они ни были, всегда будут иметь общую площадь, тем меньшую, чем меньше будет их ширина, и пределом ее будет то, что чистый геометр называет точкой.

Вот почему говорят, что две пересекающиеся линии имеют общую точку, и эта истина представляется интуитивной.

Но она содержала бы противоречие, если бы понимать линии как непрерывности первого порядка, т. е. если на линиях, проводимых геометром, должны находиться только точки, координаты которых — рациональные числа. Противоречие станет очевидным, лишь только установят, например, существование прямых и кругов.

В самом деле, ясно, что если бы в качестве действительных рассматривались только точки с соизмеримыми координатами, то круг, вписанный в квадрат, и диагональ этого квадрата не пересекались бы, потому что координаты точки их пересечения несоизмеримы.

Этого еще недостаточно, потому что таким образом мы имели бы не все несоизмеримые числа, а только некоторые из них.

Но представим себе прямую, разделенную на две полупрямые. Каждая из этих полупрямых явится в нашем воображении как полоса известной ширины; притом эти полосы будут покрывать одна другую, потому что между ними не должно быть никакого промежутка. Когда мы пожелаем воображать наши полосы все более и более узкими, общая часть представится нам точкой, которая будет существовать постоянно; так что мы допустим в качестве интуитивной истины, что если прямая разделена на две полупрямые, то общая граница этих двух прямых есть точка; мы узнаем здесь концепцию Кронекера, согласно которой несоизмеримое число рассматривается как граница, общая двум классам рациональных чисел.

Таково происхождение непрерывности второго порядка, которая и является математической непрерывностью в собственном смысле.

Вывод. В итоге можно сказать, что разум обладает способностью создавать символы; благодаря этой способности он построил математическую непрерывность, которая представляет собой только особую систему символов. Его могущество ограничено лишь необходимостью избегать всякого противоречия; однако разум пользуется своей силой исключительно в том случае, когда опыт доставляет ему для этого основание.

В занимающем нас случае этим основанием было понятие физической непрерывности, выведенное из непосредственных данных чувственного восприятия. Но это понятие приводит к ряду противоречий, от которых надо последовательно освобождаться. Таким образом, мы вынуждены воображать все более и более усложненную систему символов. Та система, на которой мы, наконец, останавливаемся, не только свободна от внутреннего противоречия — ведь она уже оказалась такой на всех пройденных этапах, — но она также не противоречит различным так называемым интуитивным положениям, которые извлечены из более или менее обработанных эмпирических понятий.

Измеримая величина. Величины, изучавшиеся нами до сих пор, не были измеримыми, мы умели сказать, которая из двух величин является большей, но в два ли, в три ли раза она больше — этого мы не умели сказать.

В самом деле, до сих пор я занимался только порядком, в котором наши члены были размещены. Но для большинства применений этого недостаточно. Надо научиться сравнивать промежутки, отделяющие два каких-нибудь члена. Только при этом условии непрерывность делается измеримой и в ней оказывается возможным применить арифметические операции.

Это можно сделать только при помощи нового и особого соглашения. Условливаются, что в таком-то случае интервал, заключенный между членами A и B, равен интервалу, отделяющему C от D. Так, в начале нашей работы мы исходили из последовательности целых чисел и предполагали, что между двумя последовательными членами ее помещены n промежуточных; эти-то новые члены будут теперь в силу соглашения рассматриваться как равноотстоящие.

Отсюда-то и вытекает способ определения сложения двух величин; так, если интервал АВ по определению равен интервалу CD, то интервал AD по определению будет суммой интервалов АВ и CD.

Это определение в весьма значительной мере произвольно. Однако оно произвольно не вполне. Оно подчинено известным соглашениям, например правилам коммутативности и ассоциативности сложения. Но как только выбранное определение удовлетворяет этим правилам, выбор делается безразличным, и более точное определение — бесполезным.

Различные замечания. Мы можем поставить перед собой несколько важных вопросов:

1. Исчерпывается ли творческое могущество разума созданием математической непрерывности?

Нет: труды Дюбуа-Реймона служат поразительным доказательством этого.

Известно, что математики различают бесконечно малые разных порядков, так что бесконечно малые второго порядка не только бесконечно малы в абсолютном смысле, но еще и являются таковыми по отношению к бесконечно малым первого порядка. Нетрудно представить себе бесконечно малые дробного и даже иррационального порядка, и, таким образом, мы снова находим ту последовательность математической непрерывности, которой посвящены предшествующие страницы. Более того: существуют такие бесконечно малые величины, которые бесконечно малы по отношению к бесконечно малым первого порядка и, напротив, бесконечно велики по отношению к бесконечно малым порядка 1 + ε, как бы ни было мало ε. Итак, вот еще новые члены, разместившиеся в нашем ряду; и если мне будет позволено вернуться к терминологии, которой я недавно держался и которая является достаточно удобной, хотя еще и не используется широко, я скажу, что этим создан вид непрерывности третьего порядка.

Легко было бы идти дальше, но это было бы бесполезной игрой ума; пришлось бы воображать себе одни символы без возможности их применения; на это никто не отважится. Даже непрерывность третьего порядка, к которой приводит рассмотрение различных порядков бесконечно малых, сама по себе является слишком мало полезной, чтобы приобрести право быть упоминаемой, и геометры рассматривают ее только просто как курьез. Разум пользуется своей творческой силой только тогда, когда опыт принуждает его к этому.

2. Раз мы обладаем понятием математической непрерывности, гарантированы ли мы от противоречий, аналогичных тем, которые положили начало этому понятию?

Нет; и я сейчас дам этому пример.

Надо быть очень сведущим, чтобы не считать очевидным, что каждая кривая имеет касательную: и в самом деле, если представлять себе эту кривую и некоторую прямую как две узкие полосы, то всегда можно расположить их так, что они будут иметь общую часть, не пересекаясь. Теперь вообразим себе, что ширина этих двух полос бесконечно уменьшается; существование их общей части будет всегда возможным, и в пределе, так сказать, две линии будут иметь общую точку, не пересекаясь, т. е. они будут взаимно касаться друг друга.

Геометр, рассуждающий таким образом, сделал бы — сознательно или нет — то же самое, что мы сделали раньше, желая доказать, что две пересекающиеся линии имеют общую точку; и его интуиция могла бы показаться такой же законной.

Между тем она его обманула бы. Можно доказать, что существуют кривые, не имеющие касательных, если эта кривая определена как аналитическая непрерывность второго порядка.

Несомненно, какая-нибудь уловка, аналогичная раньше изученным нами, позволила бы устранить противоречие, но так как оно встречается только в весьма исключительных случаях, то им и не занимаются. Вместо того чтобы стараться примирить интуицию с анализом, удовольствовались тем, что пожертвовали одним из двух; и так как анализ должен остаться непогрешимым, то всю вину отнесли на счет интуиции.

Физическая непрерывность нескольких измерений. Выше я исследовал физическую непрерывность такою, какой она вытекает из непосредственных данных наших чувств или, если угодно, из прямых результатов опытов Фехнера; я показал, что эти результаты резюмируются противоречивыми формулами

A = B, В = С, A < С,
Посмотрим теперь, как это понятие было обобщено и как оказалось возможным вывести из него понятие непрерывностей многих измерений.

Рассмотрим две любые группы ощущений. Мы или будем в состоянии различить их или нет, подобно тому как в опытах Фехнера вес в 10 граммов можно было отличить от веса в 12 граммов, но не от веса в 11 граммов. Ничего другого не нужно для построения непрерывности многих измерений.

Назовем элементом одну из этих групп ощущений. Это будет нечто аналогичное математической точке, однако не совсем то же самое. Мы не можем определить размеры нашего элемента, так как мы не умеем отличить его от соседних элементов, он как бы окутан туманом. Если бы можно было употребить астрономическое сравнение, наши «элементы» были бы подобны туманностям, между тем как математические точки уподоблялись бы звездам.

Если так, то система элементов образует непрерывность, раз есть возможность перейти от любого из них к какому угодно другому через ряд последовательных элементов — таких, что каждый из них не мог бы быть различен от предыдущего. Этот линейный ряд является по отношению к линии математика тем же, чем является изолированный элемент по отношению к точке.

Прежде чем идти дальше, я должен разъяснить, что такое купюра. Рассмотрим непрерывность C и возьмем у нее некоторые из ее элементов, которые на одно мгновение будем рассматривать не принадлежащими больше к этой непрерывности. Совокупность элементов, взятых таким образом, будет называться купюрой. Может статься, что вследствие этой операции C окажется подразделенной на несколько отдельных непрерывностей, так как совокупность остающихся элементов не будет более составлять единую непрерывность.

Тогда у C найдутся два элемента A и B, которые необходимо будет считать принадлежащими двум различным непрерывностям; мы узнаем это потому, что нельзя будет найти в C линейный ряд последовательных элементов (каждый из этих элементов не может отличаться от предыдущего; за первый возьмем A, а за последний В), если хоть один из элементов этого ряда не будет неотличим от одного из элементов купюры.

Может, напротив, случиться, что реализация купюры будет недостаточна для подразделения непрерывности C. В целях классификации физических непрерывностей мы должны исследовать, каковы должны быть купюры, которые необходимы для подразделения непрерывности.

Если физическую непрерывность C можно подразделить, реализуя купюру, состоящую из конечного числа различимых один от другого элементов (и не образующую ни одной непрерывности, ни нескольких непрерывностей), то мы скажем, что C есть непрерывность одного измерения.

Если, напротив, можно подразделить C только при помощи купюр, которые сами представляют собой непрерывности, то мы скажем, что C — непрерывность нескольких измерений. Если это достигается купюрами, которые являются непрерывностями одного измерения, то мы скажем, что C имеет два измерения; если достаточно купюр, имеющих два измерения, то мы скажем, что C имеет три измерения, и т. д.

Таким образом, понятие физической непрерывности многих измерений оказывается определенным благодаря тому весьма простому факту, что две группы ощущений могут быть различимыми или же неразличимыми.

Математическая непрерывность нескольких измерений. Понятие математической непрерывности n измерений вытекает отсюда совершенно естественно при помощи процесса, вполне подобного тому, который мы изучили в начале этой главы. Точка подобной непрерывности, как известно, представляется нам определенной при помощи системы n различных величин, называемых ее координатами.

Не всегда необходимо, чтобы величины эти были измеримыми. В геометрии имеется целая отрасль, в которой отвлекаются от измерения этих величин; в ней занимаются, например, только изучением вопроса, лежит ли точка B на кривой ABC между точками A и C, и не стараются узнать, равна ли дуга АВ дуге ВС, или она в два раза больше ее. Это — так называемый Analysis Situs[4].

В этом вся сущность учения, привлекшего к себе внимание величайших геометров, учения, из которого вытекает ряд замечательных теорем. Эти теоремы отличаются от теорем обыкновенной геометрии тем, что они являются чисто качественными, и они остались бы справедливыми, если бы фигуры копировались неискусным чертежником, который грубо нарушал бы их пропорции и заменял бы прямые линии более или менее искривленными.

Когда в только что определенную нами непрерывность пожелали ввести меру, эта непрерывность превратилась в пространство: родилась геометрия. Но я откладываю это исследование для второй части.

Часть II Пространство

Глава III Неевклидовы геометрические системы

Всякое заключение предполагает наличие посылок; посылки же эти или сами по себе очевидны и не нуждаются в доказательстве, или могут быть установлены, только опираясь на другие предположения. Но так как этот процесс не может продолжаться беспредельно, то всякая дедуктивная наука, и в частности геометрия, должна основываться на некотором числе недоказуемых аксиом. Поэтому все руководства по геометрии прежде всего излагают эти аксиомы. Но между этими аксиомами приходится делать различие; некоторые их них, как, например, аксиома: «две величины, равные одной и той же третьей, равны между собой», суть предложения не геометрии, а анализа. Я рассматриваю их как аналитические априорные суждения и не буду заниматься ими. Но я должен остановиться на других аксиомах, которые относятся к геометрии. Большинство руководств излагают три такие аксиомы:

1. Между двумя точками можно провести лишь одну прямую.

2. Прямая есть кратчайшее расстояние между двумя точками.

3. Через данную точку можно провести лишь одну прямую, параллельную данной.

Хотя вообще и обходятся без доказательства второй из этих аксиом, но было бы возможно вывести ее из двух остальных и из тех гораздо более многочисленных аксиом, которые допускаются скрыто, как я выясню это далее.

Долгое время тщательно искали доказательства третьей аксиомы, известной под названием постулата Евклида. Сколько было потрачено сил в этой химерической надежде, положительно не поддается описанию. Наконец, в начале прошлого столетия и почти одновременно двое ученых, русский — Лобачевский и венгерский — Бояи, установили неопровержимо, что это доказательство невозможно; этим они почти совсем избавили нас от изобретателей геометрии без постулата Евклида; с тех пор парижская Академия наук получает не более одного-двух новых доказательств в год. Но вопрос не был исчерпан; его разработка не замедлила сделать новый большой шаг с опубликованием знаменитого мемуара Римана «Über die Нуроthesen, welche der Geometrie zum Grunde liegen»[5]. Эта маленькая работа вызвала к жизни большинство новых работ, о которых я буду говорить дальше и среди которых следует назвать работы Бельтрами и Гельмгольца.

Геометрия Лобачевского. Если бы возможно было вывести постулат Евклида из других аксиом, то, отбрасывая этот постулат и допуская другие аксиомы, мы, очевидно, должны были бы прийти к следствию, заключающему в себе противоречие; поэтому было бы невозможно на таких положениях построить цельную геометрическую систему.

Но как раз это и сделал Лобачевский. Он допускает сначала, что

Через точку можно провести несколько прямых, параллельных данной прямой.

Кроме этой, все другие аксиомы Евклида он сохраняет. Из этих гипотез он выводит ряд теорем, между которыми нельзя указать никакого противоречия, и строит геометрию, непогрешимая логика которой ни в чем не уступает евклидовой геометрии. Теоремы, конечно, весьма отличаются от тех, к которым мы привыкли, и вначале кажутся несколько странными.

Так, сумма углов треугольника всегда меньше двух прямых углов; разность между этой суммой и двумя прямыми углами пропорциональна площади треугольника.

Невозможно построить фигуру, подобную данной, но имеющую иные размеры.

Если разделить окружность на n равных частей и провести в точках деления касательные, то эти n касательных образуют многоугольник, если радиус окружности достаточно мал; но если этот радиус достаточно велик, они не встретятся.

Бесполезно было бы увеличивать число этих примеров; теоремы Лобачевского не имеют никакого отношения к евклидовым, но тем не менее они логически связаны между собой.

Геометрия Римана. Вообразим себе мир, заселенный исключительно существами, лишенными толщины, и предположим, что эти «бесконечно плоские» существа расположены все в одной плоскости и не могут из нее выйти. Допустим далее, что этот мир достаточно удален от других миров, чтобы не подвергаться их влиянию. Раз мы начали делать такие допущения, ничто не мешает нам наделить эти существа способностью мышления и считать их способными создать геометрию. В таком случае они, конечно, припишут пространству только два измерения.

Но предположим теперь, что эти воображаемые существа, оставаясь все еще лишенными толщины, имеют форму поверхности шара, а не форму плоскости, и расположены все на одной и той же сфере, с которой не могут сойти. Какую геометрию они могут построить? Прежде всего, ясно, что они припишут пространству только два измерения; роль прямой линии для них будет играть кратчайшее расстояние от одной точки до другой на сфере, т. е. дуга большого круга; одним словом, их геометрия будет геометрией сферической.

То, что они назовут пространством, будет эта сфера, с которой они не могут сойти и на которой происходят все явления, доступные их познанию. Их пространство будет безгранично, так как по сфере всегда можно безостановочно идти вперед, и тем не менее оно будет конечно; никогда нельзя дойти до края, но можно совершить кругообразное движение.

Геометрия Римана есть не что иное, как сферическая геометрия, распространенная на три измерения. Чтобы построить ее, немецкий математик должен был отбросить не только постулат Евклида, но, кроме того, еще и первую аксиому: через две точки можно провести только одну прямую.

На сфере через две данные точки можно провести вообще один большой круг (который, как мы сейчас видели, играл бы роль прямой для наших воображаемых существ); но есть одно исключение: если две данные точки диаметрально противоположны, то через них можно провести бесконечное множество больших кругов. Так и в геометрии Римана (по крайней мере в одной из ее форм) через две точки вообще можно провести только одну прямую; но есть исключительные случаи, когда через две точки можно провести бесконечное количество прямых.

Между геометриями Римана и Лобачевского существует в некотором смысле противоположность.

Так, сумма углов треугольника:

равна двум прямым в геометрии Евклида;

меньше двух прямых в геометрии Лобачевского;

больше двух прямых в геометрии Римана.

Число линий, которые можно провести через данную точку параллельно данной прямой:

равно единице в геометрии Евклида;

нулю в геометрии Римана;

бесконечности в геометрии Лобачевского.

Прибавим, что пространство Римана конечно, хотя и безгранично, в указанном выше смысле этих двух слов.

Поверхности с постоянной кривизной. Остается возможным одно возражение. Действительно, теоремы Лобачевского и Римана не содержат никакого противоречия; но как бы ни были многочисленны следствия, которые вывели из своих допущений эти два геометра, все же последние должны были остановиться, не исчерпав всех возможных выводов, потому что число их бесконечно. Но тогда кто поручится, что если бы они продолжали свои выводы далее, то все же не пришли бы к противоречию?

Это затруднение не существует для геометрии Римана, если ограничиваться двумя измерениями; в самом деле, геометрия Римана для двух измерений не отличается, как мы видели, от сферической геометрии, которая есть только ветвь обыкновенной геометрии и которая, следовательно, стоит вне всякой дискуссии.

Бельтрами, сведя также и геометрию Лобачевского для двух измерений к тому, что она стала только ветвью обыкновенной геометрии, опроверг таким же образом направленное против нее возражение. Вот как он пришел к этому. Рассмотрим на некоторой поверхности произвольную фигуру. Представим себе, что эта фигура начерчена на гибком и нерастяжимом полотне, наложенном на эту поверхность, так что, когда полотно перемещается и деформируется, различные линии этой фигуры могут изменять форму, не меняя длины. Вообще, эта гибкая и нерастяжимая фигура не может перемещаться, не оставляя поверхности; но есть некоторые особые поверхности, для которых подобное движение было бы возможно: это — поверхности с постоянной кривизной.

Возвратимся к сравнению, которое мы сделали выше, и вообразим себе существа без толщины, живущие на одной из таких поверхностей. Движение фигуры, все линии которой сохраняют постоянную длину, с их точки зрения будет возможно. Подобное движение, наоборот, казалось бы абсурдным для существ без толщины, живущих на поверхности с переменной кривизной.

Поверхности с постоянной кривизной бывают двух родов. Одни из них — поверхности с положительной кривизной; они могут быть деформированы так, что накладываются на сферу. Следовательно, геометрия этих поверхностей сводится к сферической геометрии, которая есть геометрия Римана. Другие — поверхности с отрицательной кривизной. Бельтрами показал, что геометрия этих поверхностей есть не что иное, как геометрия Лобачевского. Таким образом, геометрии двух измерений, как Римана, так и Лобачевского, оказываются связанными с евклидовой геометрией.

Истолкование неевклидовых геометрических систем. Таким образом, устраняется возражение, касающееся геометрических систем двух измерений.

Легко было бы распространить рассуждение Бельтрами на геометрии трех измерений. Умы, не отрицающие пространства четырех измерений, не увидят в этом никакой трудности, но таковых немного. Поэтому я предпочитаю поступить иначе.

Возьмем некоторую плоскость, которую я буду называть основной, и построим нечто вроде словаря, установив соответствие в двойном ряду членов, написанных в двух столбцах, таким же образом, как в обычных словарях соответствуют друг другу слова двух языков, имеющие одинаковое значение.

Пространство….. Часть пространства, расположенная ниже основной плоскости.
Плоскость……. Сфера, ортогонально пересекающая основную плоскость.
Прямая…….. Круг, ортогонально пересекающий основную плоскость.
Сфера…….. Сфера.
Круг……… Круг.
Угол…….. Угол.
Расстояние между двумя точками…… Логарифм ангармонического отношения этих двух точек и пересечений основной плоскости с кругом, проходящим через эти две точки и пересекающим ее ортогонально
и т. д.

Возьмем затем теоремы Лобачевского и переведем их с помощью этого словаря, как мы переводим немецкий текст с помощью немецко-французского словаря. Мы получим таким образом теоремы обыкновенной геометрии.

Например, теорема Лобачевского: «сумма углов треугольника меньше двух прямых» переводится так: «если криволинейный треугольник имеет сторонами дуги кругов, которые при продолжении пересекают основную плоскость ортогонально, то сумма углов этого криволинейного треугольника будет меньше двух прямых». Таким образом, как бы далеко мы ни развивали следствия из допущений Лобачевского, мы никогда не натолкнемся на противоречие. В самом деле, если бы две теоремы Лобачевского находились в противоречии, то то же самое имело бы место и для переводов этих двух теорем, сделанных при помощи нашего словаря; но эти переводы суть теоремы обыкновенной геометрии, а никто не сомневается, что обыкновенная геометрия свободна от противоречий. Однако откуда происходит в нас эта уверенность и справедлива ли она? Это — вопрос, который я не буду разбирать здесь, так как он потребовал бы подробного развития. Во всяком случае, указанное выше возражение отпадает полностью.

Это еще не все. Геометрия Лобачевского, допускающая таким образом конкретное истолкование, перестает быть пустым логическим упражнением и может получить применение; я не имею времени говорить здесь ни об ее приложениях, ни о той пользе, которую Клейн и я извлекли из нее для интегрирования линейных уравнений.

Указанное истолкование, впрочем, не единственное. Можно было бы установить несколько словарей, аналогичных предыдущему, и все они позволяли бы простым «переводом» преобразовывать теоремы Лобачевского в теоремы обыкновенной геометрии.

Скрытые аксиомы. Являются ли аксиомы, явно формулируемые в руководствах, единственными основаниями геометрии? Мы можем убедиться в противном, замечая, что даже если одну за другой отвергнуть эти аксиомы, все-таки еще останутся нетронутыми некоторые предложения, общие теориям Евклида, Лобачевского и Римана. Эти предложения должны опираться на некоторые предпосылки, которые геометры допускают в скрытой форме. Интересно попытаться выделить их из классических доказательств.

Стюарт Милль утверждал, что всякое определение содержит аксиому, так как, определяя, скрыто утверждают существование определяемого предмета. Это значило бы заходить слишком далеко; редко бывает, чтобы математики давали определение, не доказав существования определяемого объекта; если же они избавляют себя от этого труда, то обыкновенно в тех случаях, когда читатель сам легко может сделать соответствующее дополнение. Но не следует забывать, что слово «существование» имеет различный смысл тогда, когда речь идет о математическом объекте, и тогда, когда вопрос касается материального предмета. Математический объект существует, если его определение не заключает противоречия ни в самом себе, ни с предложениями, допущенными раньше.

Но если замечание Стюарта Милля не может быть приложено ко всем определениям, оно тем не менее остается справедливым для некоторых из них. Например, плоскость иногда определяют так: плоскость есть поверхность такого рода, что прямая, соединяющая две любые точки ее, укладывается целиком на этой поверхности.

Это определение, очевидно, скрывает в себе новую аксиому; правда, можно было бы его изменить, и это было бы лучше, но тогда надо было явно указать эту аксиому.

Другие определения могут дать повод к размышлениям, не менее важным.

Таково, например, определение равенства двух фигур: две фигуры равны, когда их можно наложить одну на другую. Чтобы сделать это, надо одну из них перемещать до тех пор, пока она не совпадет с другой; но как надо ее перемещать? Если мы зададим этот вопрос, то, без сомнения, нам ответят, что надо сделать это, не деформируя ее, — как если бы дело шло о неизменяемом твердом теле. Но тогда порочный круг будет очевиден.

Фактически это определение ничего не определяет; оно не имело бы никакого смысла для существа, обитающего в мире, где имеются только жидкости. Если оно кажется нам ясным, то просто потому, что мы привыкли к свойствам реальных твердых тел, которые не отличаются значительно от свойств идеальных твердых тел, сохраняющих все свои размеры неизменными.

Между тем, как ни несовершенно это определение, оно скрывает в себе некоторую аксиому.

Возможность движения неизменной фигуры не есть истина, очевидная сама по себе; порядок очевидности ее во всяком случае не превышает порядка очевидности постулата Евклида и несравним с порядком очевидности аналитических априорных суждений.

Впрочем, изучая геометрические определения и доказательства, мы видим, что приходится допустить без доказательства не только возможность этого движения, но и еще некоторые из его свойств. И прежде всего — то, которое вытекает из определения прямой линии. Ей дано много несовершенных определений, но истинным является следующее, подразумеваемое во всех доказательствах, где используется прямая линия:

«Может случиться, что движение неизменной фигуры будет таково, что все точки некоторой линии, принадлежащей этой фигуре, остаются неподвижными, между тем как все точки, расположенные вне этой линии, движутся. Подобная линия будет называться прямой». В этой формулировке мы намеренно отделили определение от аксиомы, которую оно скрывает в себе.

Многие из доказательств — как, например, доказательства равенства треугольников, доказательство возможности опустить перпендикуляр из точки на прямую — предполагают предложения, которые прямо не указываются, так как они требуют допущения возможности переносить фигуру в пространстве определенным образом.

Четвертая геометрия. Среди этих скрытых аксиом, мне кажется, есть одна, которая заслуживает некоторого внимания, так как, опуская ее, можно построить четвертую геометрию, столь же свободную от внутренних противоречий, как и геометрии Евклида, Лобачевского и Римана.

Чтобы доказать, что всегда можно восставить из точки A перпендикуляр к прямой АВ, рассматривают прямую АС, вращающуюся около точки A и сначала сливающуюся с неподвижной прямой АВ; ее поворачивают около A до тех пор, пока она не образует продолжения АВ.

Таким образом допускаются два предположения: во-первых, что подобное вращение возможно и, во-вторых, что можно продолжать его до тех пор, пока две прямые не составят продолжение одна другой. Если мы допустим первое и откинем второе, то придем к ряду теорем, еще более странных, чем теоремы Лобачевского и Римана, но в такой же степени свободных от противоречия.

Я приведу только одну из этих теорем и притом не из самых странных: действительная прямая может быть перпендикулярна сама к себе.

Теорема Ли. Число аксиом, скрытым образом введенных в классические доказательства, больше, чем это необходимо. Было бы интересно свести это число к минимуму. Можно спросить себя сначала, осуществимо ли это желание — не беспредельно ли и число необходимых аксиом и число воображаемых геометрий. В этого рода исследованиях первое место занимает теорема Софуса Ли. Ее можно выразить так:

Предположим, что допускаются следующие положения:

1. Пространство имеет n измерений.

2. Движение неизменяемой фигуры возможно.

3. Необходимо p условий, чтобы определить положение этой фигуры в пространстве.

Число геометрий, совместимых с этими положениями, будет ограниченное.

Я могу даже прибавить, что если n дано, то для p можно указать высший предел.

Следовательно, если допустить возможность движения неизменяемой фигуры, то можно будет придумать лишь конечное число (и даже довольно ограниченное) геометрических систем трех измерений.

Геометрии Римана. Между тем этот результат, по-видимому, находится в противоречии с заключениями Римана, так как этот ученый построил бесчисленное множество различных геометрий (та, которой обыкновенно дают его имя, есть не более чем частный случай).

Все зависит, говорит Риман, от способа, которым определяют длину кривой. Но существует бесконечное множество способов определять эту длину, и каждый из них может сделаться точкой отправления новой геометрии. Это совершенно верно; но большинство этих определений несовместимо с движением неизменяемой фигуры, которое предполагается возможным в теореме Ли. Эти геометрии Римана, столь интересные с различных точек зрения, могут быть лишь чисто аналитическими, и они не поддаются доказательствам, которые были бы аналогичны евклидовым.

Геометрии Гильберта. Наконец, Веронезе и Гильберт придумали новые, еще более странные геометрии, которые они назвали неархимедовыми. Они построили их, устранив аксиому Архимеда, в силу которой любая данная протяженность, умноженная на целое достаточно большое число, в конечном счете превзойдет любую данную протяженность, сколь бы велика она ни была. На неархимедовой прямой существуют все точки нашей обычной геометрии, но имеются множества других, которые вставляются между ними, так что между двумя отрезками, которые геометры старой школы рассматривали как смежные, оказывается возможным поместить множество новых точек. Одним словом, неархимедовы пространства уже не являются более непрерывностью второго порядка, если применять язык предыдущей главы, они суть непрерывность третьего порядка.

О природе аксиом. Большинство математиков смотрят на геометрию Лобачевского как на простой логический курьез; но некоторые из них идут дальше. Раз возможно несколько геометрий, то достоверно ли, что наша геометрия есть истинная? Без сомнения, опыт учит нас, что сумма углов треугольника равна двум прямым; но это потому, что мы оперируем треугольниками слишком малыми; разность, по Лобачевскому, пропорциональна площади треугольника; не может ли она сделаться заметной, когда мы будем оперировать большими треугольниками или когда наши измерения сделаются более точными? Таким образом, евклидова геометрия была бы только временной геометрией.

Чтобы обсудить это мнение, мы должны сначала спросить себя, в чем состоит природа геометрических аксиом. Не являются ли они синтетическими априорными суждениями, как говорил Кант?

Будь это так, они навязывались бы нам с такой силой, что мы не могли бы ни вообразить себе положение противоположного содержания, ни основать на нем теоретическое построение. Неевклидовых геометрий не могло бы быть.

Чтобы убедиться в этом, возьмем настоящее синтетическое априорное суждение, например то, которое, как мы видели в первой главе, играет первенствующую роль: если теорема верна для числа 1 и если доказано, что раз она справедлива для n, то она верна и для n + 1; в таком случае она будет справедлива для всех положительных целых чисел.

Попытаемся затем отвлечься от этого положения и, откинув его, построить ложную арифметику по аналогии с неевклидовой геометрией. Это нам не удастся. Сначала было даже стремление рассматривать эти суждения как аналитические.

С другой стороны, обратимся снова к нашим воображаемым существам без толщины; могли ли бы мы допустить, чтобы эти существа, если бы их ум был устроен по образу нашего, приняли евклидову геометрию, которая противоречила бы всему их опыту?

Итак, не должны ли мы заключить, что аксиомы геометрии суть истины экспериментальные? Но над идеальными прямыми или окружностями не экспериментируют; это можно делать только над материальными объектами. К чему же относятся опыты, которые служили бы основанием геометрии?

Ответ ясен. Выше мы видели, что рассуждения ведутся постоянно так, как если бы геометрические фигуры были подобны твердым телам. Следовательно, вот что заимствовала геометрия у опыта: свойства твердых тел.

Свойства света и его прямолинейное распространение также были поводом, из которого вытекли некоторые предложения геометрии, в частности предложения проективной геометрии; так что с этой точки зрения можно было бы сказать, что метрическая геометрия есть изучение твердых тел, а проективная геометрия — изучение света.

Но трудность остается в силе, и она непреодолима. Если бы геометрия была опытной наукой, она не была бы наукой точной и должна была бы подвергаться постоянному пересмотру. Даже более, она немедленно была бы уличена в ошибке, так как мы знаем, что не существует твердого тела абсолютно неизменного.

Итак, геометрические аксиомы не являются ни синтетическими априорными суждениями, ни опытными фактами. Они суть условные положения (соглашения): при выборе между всеми возможными соглашениями мы руководствуемся опытными фактами, но самый выбор остается свободным и ограничен лишь необходимостью избегать всякого противоречия. Поэтому-то постулаты могут оставаться строго верными, даже когда опытные законы, которые определяли их выбор, оказываются лишь приближенными.

Другими словами, аксиомы геометрии (я не говорю об аксиомах арифметики) суть не более чем замаскированные определения.

Если теперь мы обратимся к вопросу, является ли евклидова геометрия истинной, то найдем, что он не имеет смысла. Это было бы все равно, что спрашивать, какая система истинна — метрическая или же система со старинными мерами, или какие координаты вернее — декартовы или же полярные. Никакая геометрия не может быть более истинна, чем другая; та или иная геометрия может быть только более удобной. И вот, евклидова геометрия есть и всегда будет наиболее удобной по следующим причинам:

1. Она проще всех других; притом она является таковой не только вследствие наших умственных привычек, не вследствие какой-то, я не знаю, непосредственной интуиции, которая нам свойственна по отношению к евклидову пространству; она наиболее проста и сама по себе, подобно тому как многочлен первой степени проще многочлена второй степени; формулы сферической тригонометрии сложнее формул прямолинейной тригонометрии, и они показались бы еще более сложными для аналитика, который не был бы знаком с геометрическими обозначениями.

2. Она в достаточной степени согласуется со свойствами реальных твердых тел, к которым приближаются части нашего организма и наш глаз и на свойстве которых мы строим наши измерительные приборы.

Глава IV Пространство и геометрия

Начнем с маленького парадокса.

Существа, разум которых был бы подобен нашему и которые имели бы такие же органы чувств, как и мы, но которые не получили бы никакого предварительного воспитания, могли бы получить от соответственно подобранного внешнего мира такие впечатления, что им пришлось бы построить геометрию иную, чем евклидова, и разместить явления этого внешнего мира в пространстве неевклидовом или даже в пространстве четырех измерений.

Для нас, ум которых сформировался под влиянием окружающего нас мира, не составило бы никакой трудности отнести к нашему евклидову пространству явления этого нового мира, если бы мы были в него внезапно перенесены. И, напротив, если бы существа из того мира были перенесены к нам, они должны были бы отнести наши явления к неевклидовому пространству.

Но ведь с небольшими усилиями этого же могли бы достигнуть и мы.

Тот, кто всю свою жизнь посвятил бы такой задаче, может быть, оказался бы в состоянии представить себе четвертое измерение.

Пространство геометрическое и пространство представлений. Часто говорят, что образы внешних предметов локализованы в пространстве, что они даже не могут образоваться иначе как при этом условии. Говорят также, что это пространство, которое таким образом служит готовым кадром наших ощущений и представлений, тождественно с пространством геометров, всеми свойствами которого оно обладает.

Всем, кто так думает, предыдущая фраза должна показаться крайне странной. Но надо рассмотреть, не обманываются ли они некоторой иллюзией, которую более глубокий анализ мог бы рассеять.

Каковы, прежде всего, свойства пространства в собственном смысле? Я хочу сказать — того пространства, которое является предметом геометрии и которое я назову пространством геометрическим. Вот некоторые из наиболее существенных его свойств:

1. Оно непрерывно.

2. Оно бесконечно.

3. Оно имеет три измерения.

4. Оно однородно, т. е. все точки его тождественны между собой.

5. Оно изотропно, т. е. все прямые, которые проходят через одну и ту же точку, тождественны между собой.

Сравним теперь его с кадром наших представлений и ощущений, который я мог бы назвать пространством представлений.

Пространство визуальное. Рассмотрим сначала чисто зрительное впечатление, обусловливаемое изображением, возникающим на сетчатке. Краткий анализ показывает, что это изображение непрерывно, но обладает только двумя измерениями; это уже составляет отличие между пространством геометрическим и тем, что можно было бы назвать чисто визуальным пространством. Далее, этот образ заключен в ограниченном кадре.

Наконец, существует еще одно отличие, не менее важное: это чисто визуальное пространство неоднородно. Различные точки сетчатки — независимо от изображений, которые могут на них возникать, — играют не одну и ту же роль. Никак нельзя считать желтое пятно тождественным с точкой, лежащей у края сетчатки. В самом деле, здесь не только самый предмет производит гораздо более живые впечатления, но здесь, как и во всяком ограниченном кадре, точка, занимающая центр кадра, не будет казаться тождественной с точкой, близкой к одному из кадров.

Более глубокий анализ, без сомнения, показал бы нам, что эта непрерывность визуального пространства и его два измерения суть не более чем иллюзия; этот анализ еще более отдалил бы визуальное пространство от геометрического. Но мы ограничимся здесь только этим замечанием, следствия из которого были достаточно рассмотрены в главе II.

Однако зрение позволяет нам оценивать расстояния и, следовательно, воспринимать третье измерение. Но всякий знает, что это восприятие третьего измерения сводится к ощущению усилия, сопровождающему аккомодацию, которую надо выполнить, и к ощущению, сопровождающему то схождение обеих глазных осей, которое необходимо для отчетливого восприятия предмета.

Мы имеем здесь мускульные ощущения, совершенно отличные от ощущений зрительных, которые дали нам познание первых двух измерений. Таким образом, третье измерение выступит перед нами не в той же роли, какую играют два других. А следовательно, то, что можно назвать полным визуальным пространством, не есть пространство изотропное.

Правда, оно имеет как раз три измерения, т. е. элементы наших зрительных ощущений (по крайней мере те из них, которые, слагаясь, образуют представление протяженности) будут вполне определены, когда известны три из них; выражаясь математическим языком, они будут функциями трех независимых переменных.

Но исследуем предмет несколько ближе. Третье измерение открывается нам двумя различными способами: благодаря усилию при аккомодации и вследствие схождения глазных осей.

Эти два рода показаний, без сомнения, всегда согласованы друг с другом. Между ними существует постоянное соотношение; выражаясь математически, две переменные, измеряющие оба типа мускульного ощущения, не выступают перед нами в качестве независимых, или еще, — чтобы не прибегать к математическим понятиям достаточно высокой сложности, — мы можем снова воспользоваться языком предыдущей главы и выразить тот же факт следующим образом: если два ощущения схождения осей A и B неразличимы, то и два соответственно сопровождающих их ощущения аккомодаций A' и B' будут также неразличимы.

Но такое соотношение ощущений — это, так сказать, опытный факт; ничто не мешает a priori допустить обратное, и если окажется, что это обратное действительно имеет место, если эти два типа мускульных ощущений изменяются независимо один от другого, то мы должны будем ввести новую независимую переменную, и «полное визуальное пространство» выступит перед нами как физическая непрерывность четырех измерений.

Я даже прибавлю, что это представляет собою факт внешнего опыта. Ничто не мешает предположить, что существо, имеющее ум, подобный нашему, и такие же органы чувств, как и мы, помещено в мире, куда свет достигает, только пройдя через преломляющие среды сложной формы. Тогда два показания, служащие нам для оценки расстояний, перестали бы быть связанными постоянным соотношением. Существо, которое получило бы в подобном мире воспитание своих чувств, без сомнения, приписало бы полному визуальному пространству четыре измерения.

Пространство тактильное и пространство моторное. «Тактильное пространство» еще более сложно, чем визуальное, и еще более, чем оно, удаляется от пространства геометрического. Бесполезно было бы повторять для осязания анализ, проведенный мною относительно зрения.

Но вне данных зрения и осязания существуют другие ощущения, которые так же, как и эти ощущения, и даже более способствуют образованию понятия пространства. Это — те всем известные ощущения, которыми сопровождаются все наши движения и которые обыкновенно называются мускульными.

Соответствующий им кадр (le cadre) образует то, что можно назвать моторным пространством.

Каждый мускул дает происхождение особому ощущению, способному делаться больше или меньше, так что совокупность наших мускульных ощущений будет зависеть от стольких переменных, сколько у нас мускулов. С этой точки зрения моторное пространство имело бы столько измерений, сколько мы имеем мускулов.

Я знаю, мне тотчас скажут, что если мускульные ощущения способствуют образованию понятия пространства, то это потому, что мы имеем чувство направления каждого движения, и оно является составной частью ощущения. Если бы это было так, если бы мускульное ощущение не могло зародиться иначе, как сопутствуемое геометрическим чувством направления, то геометрическое пространство было бы формой, присущей нашей способности к ощущению. Но когда я анализирую свои ощущения, я этого совершенно не замечаю. Я вижу, что ощущения, соответствующие движениям того же направления, связаны в моем уме простой ассоциацией идей. К этой ассоциации идей и сводится то, что мы называем «чувством направления». Следовательно, этого чувства нельзя было бы найти в единичном ощущении.

Эта ассоциация крайне сложна, так как сокращение того же мускула может отвечать, смотря по положению членов, движениям самых различных направлений.

Она, кроме того, очевидно, является приобретенной; как все ассоциации идей, она есть результат привычки; эта привычка сама вытекает из крайне многочисленных опытов; не подлежит никакому сомнению, что если бы воспитание наших чувств происходило в иной среде, где мы получали иные впечатления, то возникли бы иные привычки, и наши мускульные ощущения были бы ассоциированы по иным законам.

Характерные черты пространства представлений. Таким образом, пространство представлений в своих трех формах — визуального, тактильного и моторного пространства — существенно отличается от геометрического пространства.

Оно ни однородно, ни изотропно; нельзя даже сказать, что оно имеет три измерения.

Часто говорят, что мы «проектируем» в геометрическое пространство предметы наших внешних восприятий, что мы «локализуем» их. Имеет ли это смысл и какой? Должно ли это обозначать, что мы представляем себе внешние предметы в геометрическом пространстве?

Наши представления суть только воспроизведение наших ощущений, поэтому они могут разместиться только в том же кадре, в каком и последние, т. е., в пространстве представлений.

Нам так же невозможно представить себе внешние тела в геометрическом пространстве, как невозможно художнику рисовать на плоской картине предметы с их тремя измерениями.

Пространство представлений есть только образ геометрического пространства — образ, видоизмененный некоторым родом перспективы; мы не можем представить себе предметы иначе, как подчиняя их законам этой перспективы.

Мы не представляем себе, следовательно, внешних тел в геометрическом пространстве, но мы рассуждаем об этих телах, как если бы они были помещены в геометрическом пространстве.

С другой стороны, когда говорят, что мы «локализуем» данный предмет в данной точке пространства, что хотят этим сказать?

Это просто означает, что мы представляем себе движения, которые надо совершить, чтобы достигнуть этого предмета.

И пусть не говорят, что для того, чтобы представить себе эти движения, их надо проектировать сначала в пространство и что понятие пространства должно, следовательно, существовать раньше.

Когда я говорю, что мы представляем себе эти движения, я хочу сказать только, что мы представляем себе мускульные ощущения, которые сопровождают их и которые вовсе не имеют геометрического характера, а следовательно, отнюдь не предполагают предсуществования понятия пространства.

Изменения состояния и изменения положения. Но скажут, если идея геометрического пространства не присуща нашему уму и, с другой стороны, если никакое из наших ощущений не может нам доставить ее, то как она могла возникнуть?

Это — тема нашего ближайшего исследования. Оно потребует у нас некоторого времени; но я могу резюмировать в нескольких словах конечную цель рассуждения, которое мне предстоит развить.

Никакое из наших ощущений, взятое в отдельности, не могло бы привести нас к идее пространства; мы пришли к ней, только изучая законы, по которым эти ощущения следуют друг за другом. Мы видим прежде всего, что наши впечатления подвержены изменению; но между изменениями, которые мы констатируем, мы скоро бываем вынуждены делать различие.

Мы говорим, или что некоторые предметы, вызывающие эти впечатления, изменили свое состояние, или что они изменили свое положение — что они просто переместились.

Меняет ли предмет свое состояние или только положение, это передается нам всегда одним и тем же способом: изменением во всем составе впечатлений.

Каким же образом мы могли прийти к различию обоих изменений? Если произошло только изменение положения, то мы можем восстановить прежнюю совокупность впечатлений, совершая движения, ставящие нас в то же относительное положение к подвижному предмету. Мы компенсируем таким образом происшедшее изменение, восстанавливая начальное состояние обратным изменением.

Так, если речь идет о зрении и если предмет перемещается перед нашими глазами, мы можем за ним «следить глазами» и удерживать его изображение в той же точке сетчатки посредством соответственных движений глазного яблока.

Эти движения мы сознаем, так как они являются волевыми и сопровождаются мускульными ощущениями; но это не значит, что мы представляем их происходящими в геометрическом пространстве.

Именно этим характеризуется изменение положения, и оно отличается от изменения состояния тем, что всегда может быть компенсировано указанным способом.

Следовательно, может случиться, что мы переходим от системы впечатлений A к системе B двумя различными способами: 1) непроизвольно и без каких-либо мускульных ощущений — когда перемещается предмет; 2) произвольно и при наличии мускульных ощущений — когда предмет неподвижен, но перемещаемся мы таким образом, что предмет имеет по отношению к нам относительное движение.

Если дело происходит указанным образом, то переход от системы впечатлений A к системе B есть только изменение положения.

Отсюда следует, что зрение и осязание не могли бы нам дать понятие пространства без помощи «мускульного чувства».

Это понятие не могло бы образоваться не только из единичного ощущения, но даже из ряда ощущений; кроме того, существо неподвижное никогда не могло бы приобрести его, так как, если бы оно не имело возможности компенсировать своими движениями эффектов, зависящих от изменений положения внешних предметов, оно не имело бы никакого основания отличать их от изменений состояния. Оно не могло бы также приобрести это понятие, если бы движения его не были произвольными или если бы они не сопровождались некоторыми ощущениями.

Условия компенсации. Каким образом возможно явление такого рода, что два изменения, не зависящие друг от друга, взаимно компенсируются?

Ум, знакомый уже с геометрией, рассуждал бы так. Для того чтобы произошла компенсация, очевидно, нужно, чтобы различные части внешнего предмета, с одной стороны, и различные органы наших чувств, с другой, приходили после двойного изменения опять в то же относительное положение. А для этого надо, чтобы различные части внешнего предмета равным образом сохранили друг к другу то же самое относительное положение и чтобы то же имело место для взаимного расположения различных частей нашего тела.

Другими словами, при первом изменении внешний предмет должен перемещаться как неизменное твердое тело; то же самое должно произойти с системой нашего тела при втором изменении, компенсирующем первое.

При этих условиях компенсация может произойти. Но мы, не будучи еще знакомы с геометрией, — потому что у нас еще не образовалось понятие пространства, — не можем рассуждать таким образом; мы не можем предвидеть á priori, возможна ли компенсация. Но опыт учит нас, что она иногда имеет место, и это — тот опытный факт, из которого мы исходим для различения изменений состояния от изменений положения.

Твердые тела и геометрия. Среди окружающих нас предметов есть такие, которые часто испытывают перемещения, способные быть компенсированными соответственным (коррелятивным) движением нашего собственного тела. Это — тела твердые.

Другие предметы, форма которых способна изменяться, испытывают подобные перемещения (изменения положения без изменения формы) только в исключительных случаях. Когда тело перемещается, изменяя форму, мы уже не можем соответственными движениями привести органы наших чувств в то же относительное положение к этому телу; следовательно, мы более не в состоянии восстановить начальную совокупность впечатлений.

Только позднее и вследствие новых опытов мы научаемся разлагать тела переменной формы на меньшие элементы такого рода, что каждый из них перемещается почти по тем же законам, что и твердые тела. Мы таким образом отличаем «деформации» от других изменений состояния; при таких деформациях каждый элемент испытывает простое изменение положения, которое может быть компенсировано, но изменение, испытываемое всей совокупностью элементов, более глубоко и уже не способно компенсироваться коррелятивным движением[6].

Подобное понятие, будучи уже очень сложным, могло явиться только относительно поздно; кроме того, оно не могло бы зародиться, если бы наблюдение твердых тел уже не научило нас отличать изменения положения.

Следовательно, если бы не было твердых тел в природе, не было бы и геометрии.

Другое замечание также заслуживает того, чтобы на нем остановиться. Вообразим твердое тело, занимающее сначала положение α и затем переходящее в положение β; в первом своем положении оно произведет на нас систему впечатлений A и во втором — систему впечатлений В. Пусть имеется теперь второе твердое тело, качественно вполне отличное от первого, например, иного цвета. Предположим еще, что оно переходит от положения α', в котором оно производит на нас систему впечатлений A', к положению β', в котором оно вызывает в нас систему впечатлений В'.

Вообще, ни система A не будет иметь ничего общего с системой A', ни система B с системой В'. Переход от системы A к системе B и переход от системы A' к системе B' суть, следовательно, два изменения, которые сами по себе, вообще говоря, ничего общего не имеют. Между тем и то и другое изменение мы рассматриваем как перемещения; более того, мы рассматриваем их как то же самое перемещение. Каким образом это происходит?

Это — просто потому, что и то и другое перемещение может быть компенсировано одним и тем же коррелятивным движением нашего тела.

Следовательно, не что иное, как «коррелятивное движение», составляет единственную связь между двумя явлениями, которые иначе мы никогда и не подумали бы сближать.

С другой стороны, наше тело, благодаря огромному числу его сочленений и мускулов, может предпринимать множество различных движений; но не все они способны «компенсировать» изменение внешних предметов; к этому способны только те, при которых или все наше тело, или по крайней мере те из органов наших чувств, которых касается дело, перемещаются как целое, т. е. не изменяя относительных положений, — подобно твердому телу.

Итак:

1. Мы должны прежде всего различать две категории явлений. Одни, непроизвольные, не сопровождаемые мускульными ощущениями, приписываются нами внешним предметам; это суть внешние изменения. Другие, противоположного характера, которые мы приписываем движениям нашего собственного тела, суть изменения внутренние.

2. Мы замечаем, что известные изменения каждой из этих категорий могут быть компенсированы коррелятивным изменением другой категории.

3. Среди внешних изменений мы отличаем те, которые имеют коррелятивное изменение в другой категории; мы называем их перемещениями; среди изменений внутренних мы также отличаем те, которые имеют коррелятивное изменение в первой категории. Таким образом, благодаря этой взаимности определяется особый класс явлений, которые мы называем перемещениями.

Законы этих явлений и составляют предмет геометрии.

Закон однородности. Первый из этих законов есть закон однородности.

Предположим, что благодаря внешнему изменению α мы пришли от системы впечатлений A к системе B; потом это изменение α компенсировано соответственным волевым движением β так, что мы пришли опять к системе A.

Предположим теперь, что другое внешнее изменение α' снова приводит нас от системы A к системе B.

Опыт учит нас тогда, что это изменение α', как и α, способно компенсироваться коррелятивным волевым движением β' и что это движение β' соответствует тем же мускульным ощущениям, что и движение β, которое компенсировало α.

Именно этот факт и выражается обыкновенно словами: пространство однородно и изотропно.

Можно сказать также, что движение, происшедшее один раз, может повториться второй раз, третий раз и т. д., не меняя своих свойств.

В первой главе, где мы изучали природу математического умозаключения, мы видели, какое важное значение следует приписать возможности повторять неопределенное число раз одну и ту же операцию.

Именно от этого повторения математическое умозаключение приобретает свою силу; и если эта сила распространяется также на геометрические факты, то это — благодаря закону однородности.

Для полноты изложения надо было бы присоединить к закону однородности множество других аналогичных законов; я не хочу входить по поводу их в подробности, но математики резюмируют их одним словом, говоря, что перемещения образуют «группу».

Неевклидов мир. Если бы геометрическое пространство выступало в качестве кадра для каждого нашего представления, взятого в отдельности, то было бы невозможно представить себе образ, отделенный от этого кадра, и мы не могли бы ничего изменить в нашей геометрии.

На деле это не так: геометрия есть только резюме законов, по которым эти образы следуют друг за другом. В таком случае ничто не мешает нам вообразить себе ряд представлений, во всем подобных нашим обычным представлениям, но следующих друг за другом по законам, отличным от тех, к которым мы привыкли.

Поэтому понятно, что существа, умственное воспитание которых проходило бы в такой среде, где эти законы не выполняются, могли бы иметь геометрию, в значительной степени отличную от нашей.

Вообразим, например, мир, заключенный внутри большой сферы и подчиненный следующим законам. Температура здесь не равномерна; она имеет наибольшее значение в центре и понижается по мере удаления от него, делаясь равной абсолютному нулю на шаровой поверхности, которая является границей этого мира.

Я определю в точности даже закон, по которому изменяется эта температура. Пусть R будет радиус граничной поверхности, r — расстояние рассматриваемой точки от центра сферы. Абсолютная температура пусть будет пропорциональна R2r2.

Я предположу далее, что в этом мире все тела имеют один и тот же коэффициент расширения, именно такой, что длина какой-нибудь линейки пропорциональна абсолютной температуре.

Наконец, я предположу, что предмет, перенесенный из одной точки в другую, где температура иная, тотчас же приходит в состояние теплового равновесия со своей новой средой. В этих допущениях нет ничего ни противоречивого, ни немыслимого.

В таком случае движущийся предмет будет все уменьшаться по мере приближения к граничной сфере. Теперь заметим, что хотя этот мир ограничен с точки зрения нашей обычной геометрии, тем не менее он будет казаться бесконечным для его обитателей.

В самом деле, когда они пожелали бы приблизиться к граничной сфере, они охлаждались бы и становились бы все меньше и меньше. Поэтому шаги их постоянно укорачивались бы, и они никогда не могли бы достигнуть граничной сферы.

Если для нас геометрия есть не что иное, как изучение законов, по которым движутся неизменные твердые тела, то для этих воображаемых существ она была бы изучением законов, по которым движутся твердые тела, изменяющиеся вследствие тех различий в температуре, о которых я только что говорил.

Без сомнения, и в нашем мире реальные твердые тела также испытывают изменения формы и объема вследствие нагревания и охлаждения. Но устанавливая основы геометрии, мы пренебрегаем этими изменениями, так как, помимо того, что они крайне незначительны, они еще беспорядочны и, следовательно, кажутся нам случайными.

В воображаемом нами мире это было бы уже не так; эти изменения следовали бы правильным и очень простым законам. С другой стороны, различные твердые составные части тела обитателей этого мира испытывали бы такие же изменения формы и объема.

Я сделаю еще другое допущение. Я предположу, что свет здесь проходит через среды различной преломляющей способности, именно такие, что показатель преломления обратно пропорционален R2r2. Легко видеть, что в этих условиях световые лучи были бы не прямолинейными, а круговыми.

Чтобы оправдать все предыдущее, мне остается показать, что известные изменения, происходящие в положении внешних предметов, могут быть компенсированы коррелятивными движениями чувствующих существ, которые заселяют этот воображаемый мир; таким образом, может быть восстановлен первоначальный комплекс впечатлений, испытываемых этими существами.

Предположим в самом деле, что предмет перемещается, деформируясь: не как неизменное твердое тело, но как твердое тело, испытывающее неравномерные расширения, в точности соответствующие допущенному выше закону изменения температур. Для краткости я позволю себе называть подобное движение неевклидовым перемещением.

Если по соседству находится чувствующее существо, его впечатления будут изменены благодаря перемещению предмета, но оно будет в состоянии восстановить их в прежнем виде, передвигаясь само надлежащим образом. Достаточно, чтобы в результате система, состоящая из предмета и чувствующего существа, рассматриваемая как одно тело, испытывала одно из тех особых перемещений, которые я назвал неевклидовыми. Это возможно, если допустить, что члены этих существ расширяются по тому же закону, что и другие тела заселяемого ими мира.

Хотя с точки зрения нашей обычной геометрии тела окажутся после такого перемещения деформированными и различные их части отнюдь не возвратятся в прежнее относительное расположение, но мы увидим, что впечатления чувствующего существа окажутся теми же.

В самом деле, если взаимные расстояния различных частей и могли измениться, тем не менее части, бывшие вначале в соприкосновении, опять будут в соприкосновении. Следовательно, осязательные впечатления не изменятся. С другой стороны, если учесть гипотезу о преломлении и кривизне световых лучей, мы убедимся, что и зрительные впечатления останутся прежними.

Итак, наши воображаемые существа должны будут, как и мы, классифицировать наблюдаемые ими явления и выделить из них «изменения положения», которые можно компенсировать соответственным волевым движением.

Если они создадут геометрию, то она не будет, подобно нашей, изучением движений наших неизменных твердых тел; это будет наука об изменениях положения, изменениях, которые они выделят в особую группу и которые будут представлять не что иное, как «неевклидовы перемещения». Это будет неевклидова геометрия.

Таким образом, такие же существа, как мы, воспитание которых происходило бы в подобном мире, имели бы геометрию, отличную от нашей.

Мир четырех измерений. Так же, как неевклидов мир, можно представить себе мир четырех измерений.

Чувство зрения, даже при единственном глазе, в соединении с мускульными ощущениями, сопровождающими движения глазного яблока, могло бы оказаться достаточным для познания пространства трех измерений.

Образы внешних предметов рисуются на сетчатке, которая является картиной двух измерений; это — перспективные изображения.

Но так как эти предметы, а также и наш глаз, подвижны, то мы последовательно видим различные перспективные изображения одного и того же тела, схваченные с нескольких различных точек зрения.

В то же время мы убеждаемся, что переход от одного перспективного изображения к другому часто сопровождается мускульными ощущениями. Если переходы от перспективы A к перспективе B и от перспективы A' к перспективе B' сопровождаются одними и теми же мускульными ощущениями, то мы сближаем их между собой как операции одной и той же природы.

Изучая затем законы, по которым сочетаются между собой эти операции, мы убеждаемся в том, что они образуют группу, которая имеет такую же структуру, как и группа движений неизменных твердых тел.

Но мы видели, что именно из свойств этой группы мы извлекли понятие геометрического пространства и пространства трех измерений.

Мы понимаем, таким образом, как идея пространства трех измерений могла возникнуть из наблюдения этих перспективных изображений, хотя каждое из них имеет только два измерения; дело в том, что они следуют друг за другом по определенным законам.

Теперь таким же образом, как на плоскости можно сделать перспективное изображение фигуры трех измерений, можно сделать изображение фигуры четырех измерений на экране трех (или двух) измерений. Для геометра эта задача в высшей степени простая.

Можно также получить несколько перспективных изображений одной и той же фигуры с нескольких различных точек зрения. Мы можем легко представить себе эти перспективные изображения, так как они имеют только три измерения.

Вообразим, что различные перспективные изображения одного и того же предмета следуют одно за другим и что переход от одного к другому сопровождается мускульными ощущениями.

Ясно, что два из таких переходов будут рассматриваться нами как две операции одной и той же природы, если они будут связаны с такими же мускульными ощущениями.

Теперь ничто не мешает нам вообразить себе, что эти операции сочетаются по любому заданному закону, например так, что образуют группу такой же структуры, как и группа движений неизменного твердого тела четырех измерений.

В таком представлении нет ничего невозможного, и однако это как раз такие же ощущения, которые испытывало бы существо, обладающее сетчаткой двух измерений и возможностью перемещаться в пространстве четырех измерений.

В этом именно смысле допустимо говорить о возможности представить себе четвертое измерение.

Было бы невозможно представить себе этот вид пространства Гильберта, о котором мы говорили в предыдущей главе, так как это пространство уже не является непрерывностью второго порядка. Следовательно, оно слишком глубоко отличается от нашего обычного пространства.

Выводы. Мы видим, что опыт играет необходимую роль в происхождении геометрии; но было бы ошибкой заключить, что геометрия — хотя бы отчасти — является экспериментальной наукой.

Если бы она была экспериментальной наукой, она имела бы только временное, приближенное — и весьма грубо приближенное! — значение. Она была бы только наукой о движении твердых тел. Но на самом деле она не занимается реальными твердыми телами; она имеет своим предметом некие идеальные тела, абсолютно неизменные, которые являются только упрощенным и очень отдаленным отображением реальных тел.

Понятие об этих идеальных телах целиком извлечено нами из недр нашего духа, и опыт представляет только повод, побуждающий нас его использовать.

Предмет геометрии составляет изучение лишь частной «группы» перемещений, но общее понятие группы существует раньше в нашем уме (dans notre esprit), по крайней мере в виде возможности. Оно присуще нам не как форма нашего восприятия, а как форма нашей способности суждений. Надо только среди всех возможных групп выбрать ту, которая служила бы, так сказать, эталоном, с которым мы соотносили бы реальные явления. Опыт направляет нас при этом выборе, но не делает его для нас обязательным; он показывает нам не то, какая геометрия наиболее правильна, а то, какая наиболее удобна.

Читатель заметит, что я был бы в состоянии описывать фантастические миры, которые я представлял себе выше, не переставая пользоваться языком обыкновенной геометрии.

И в самом деле, мы не изменили бы его, даже если бы были перенесены в такой мир.

Существа, получившие там свое развитие, нашли бы без сомнения более удобным создать геометрию, отличную от нашей, которая лучше соответствовала бы их впечатлениям. Что же касается нас, то наверное даже при наличии тех же впечатлений мы нашли бы более удобным не изменять наших привычек.

Глава V Опыт и геометрия

1. В предыдущем я уже неоднократно старался показать, что принципы геометрии не являются фактами опыта и что, в частности, постулат Евклида не мог бы быть доказан опытом. Какими бы доказательными ни представлялись мне вышеприведенные соображения, я считаю нужным еще остановиться на этом вопросе, так как здесь мы встречаем ложную идею, глубоко укоренившуюся во многих умах.

2. Пусть мы изготовили материальный круг, измерили его радиус и окружность и желаем убедиться, равно ли отношение этих величин числу π. Что мы делаем в этом случае? Мы производим опыт не над свойствами пространства, а над свойствами как того материала, из которого приготовлен этот диск, так и того, из которого сделан метр, служащий для измерений.

3. Геометрия и астрономия. Но вопрос ставят еще иначе. Если справедлива геометрия Лобачевского, то параллакс очень удаленной звезды будет конечным; если справедлива геометрия Римана, то он будет отрицательным. Эти результаты, по-видимому, допускают опытную проверку; можно было надеяться, что астрономические наблюдения могут решить выбор между тремя геометриями.

Но то, что в астрономии называется прямой линией, есть просто траектория светового луча. Если, следовательно, сверх ожидания, удалось бы открыть отрицательные параллаксы или доказать, что все параллаксы больше известного предела, то представлялся бы выбор между двумя заключениями: мы могли бы или отказаться от евклидовой геометрии, или изменить законы оптики и допустить, что свет распространяется не в точности по прямой линии. Бесполезно добавлять, что всякий счел бы второе решение более удобным.

Таким образом, евклидовой геометрии нечего опасаться новых опытов.

4. Можно ли утверждать, будто некоторые явления, возможные в евклидовом пространстве, невозможны в неевклидовом, так что опыт, констатируя эти явления, прямо противоречил бы гипотезе о неевклидовом пространстве? По моему мнению, подобный вопрос не может возникнуть. С моей точки зрения, он вполне равносилен следующему вопросу, нелепость которого всякому бросится в глаза: существуют ли длины, которые можно выразить в метрах и сантиметрах, но которых нельзя измерить туазами, футами и дюймами, — так что опыт, констатируя существование этих длин, прямо противоречил бы тому допущению, что существуют туазы, делящиеся на 6 футов.

Рассмотрим вопрос ближе. Допустим, что прямая линия в евклидовом пространстве обладает некоторыми двумя свойствами, которые я назову A и B; что в неевклидовом пространстве она по-прежнему обладает свойством A, но уже не обладает свойством B; допустим, наконец, что в евклидовом — как и в неевклидовом — пространстве прямая линия есть единственная линия, обладающая свойством A.

Если бы это было так, то опыт мог бы решить выбор между гипотезами Евклида и Лобачевского. Представим себе, что мы констатировали бы, что известный конкретный предмет, доступный опыту, например пучок световых лучей, обладает свойством A; отсюда мы заключили бы, что он прямолинейный, и исследовали бы затем, обладает он свойством B или нет.

Но это не так; не существует свойства, которое могло бы, как это свойство A, быть абсолютным критерием, позволяющим признать, что данная линия есть прямая, и отличить ее от всякой другой линии.

Скажут, например, что это свойство следующее: «прямая линия есть такая линия, что фигура, часть которой она составляет, может двигаться без изменения взаимных расстояний ее точек, причем все точки этой линии остаются неподвижными».

В самом деле, здесь мы имеем свойство, которое и в евклидовом и в неевклидовом пространстве принадлежит прямой и только прямой. Но как узнать на опыте, обладает ли этим свойством тот или другой конкретный предмет? Для этого понадобится измерить расстояния между некоторыми его точками, но как убедиться, что та конкретная величина, которую я измерил своим материальным прибором, в точности представляет собой абстрактное расстояние между этими точками?

Таким образом, мы лишь отодвинули трудность.

И действительно, свойство, которое я изложил, не есть свойство лишь одной прямой линии, оно есть свойство как прямой, так и расстояния. Чтобы оно могло служить абсолютным критерием, надо иметь возможность установить не только то, что оно не принадлежит никакой иной линии, кроме прямой, и принадлежит расстоянию, но еще то, что оно не принадлежит никакой другой линии, кроме прямой, и никакой другой величине, кроме расстояния. А именно это неверно.

Поскольку невозможно указать конкретный опыт, который мог бы быть истолкован в евклидовой системе и не мог бы быть истолкован в системе Лобачевского, то я могу заключить: никогда никакой опыт не окажется в противоречии с постулатом Евклида, но зато и никакой опыт не будет никогда в противоречии с постулатом Лобачевского.

5. Итак, евклидова (или неевклидова) геометрия никогда не может оказаться в прямом противоречии с опытом. Но этого недостаточно. Возникает вопрос: не может ли случиться, что ее можно будет согласовать с опытом лишь путем нарушения принципа достаточного основания и принципа относительности пространства?

Объясняюсь подробнее. Рассмотрим какую-нибудь материальную систему; мы обратим внимание, с одной стороны, на «состояние» различных тел этой системы (например, на их температуру, электрический потенциал и т. д.), с другой стороны — на их положение в пространстве; и среди данных, которые позволяют определить это положение, мы различим еще взаимные расстояния этих тел, определяющие их относительные положения, и условия, которые определяют абсолютное положение системы и ее абсолютную ориентировку в пространстве.

Законы явлений, которые будут происходить в этой системе, могут зависеть от состояния этих тел и их взаимных расстояний; но вследствие относительности и пассивности пространства они не будут зависеть от абсолютного положения и абсолютной ориентировки системы.

Другими словами, состояние тел и их взаимные расстояния в какой-нибудь момент будут зависеть от состояния этих же тел и их взаимных расстояний в начальный момент; но они ни в каком случае не будут зависеть от абсолютного начального положения системы и ее абсолютной начальной ориентировки. Это свойство для краткости я буду называть законом относительности.

Я говорил до сих пор как геометр, следующий Евклиду. Всякий опыт, как я уже сказал, допускает истолкование на почве евклидовой гипотезы; но он допускает его и на почве гипотезы неевклидовой. Мы произвели ряд опытов; мы их истолковали на основании евклидовой гипотезы и нашли, что это истолкование согласно с «законом относительности».

Истолкуем их теперь по неевклидовой гипотезе. Это всегда возможно; отличие же лишь в том, что в этом новом истолковании неевклидовы расстояния между отдельными телами вообще не будут теми же, что евклидовы расстояния в первом истолковании.

Но будут ли истолкованные таким новым способом опыты по-прежнему оставаться в согласии с нашим «законом относительности»? И если это согласие не сохранится, то не будем ли мы все-таки вправе сказать, что опыт доказал неправильность неевклидовой геометрии?

Легко видеть, что это опасение напрасно; в самом деле, для того чтобы можно было приложить закон относительности во всей строгости, надо было бы приложить его ко всей Вселенной. Если же иметь в виду только часть этой Вселенной и если абсолютное положение этой части изменилось, то и расстояния ее относительно других тел Вселенной также изменились, следовательно, их влияние на рассматриваемую часть Вселенной могло увеличиться или уменьшиться; а это может изменить законы происходящих здесь явлений.

Но если система, о которой у нас идет речь, есть вся Вселенная, то опыт бессилен дать нам указания о ее абсолютном положении и ориентировке в пространстве. Все, что могут обнаружить наши инструменты, сколь бы совершенны они ни были, — это состояние различных частей Вселенной и их взаимные расстояния.

Таким образом, наш закон относительности может быть формулирован так:

Отсчеты, которые мы можем производить в какой-нибудь момент на наших инструментах, будут зависеть только от отсчетов, которые мы могли бы произвести на тех же инструментах в начальный момент.

Но подобная формулировка не зависит ни от какого истолкования опытов. Если закон верен в евклидовом истолковании, он будет верен также и в неевклидовом истолковании.

Я позволю себе по этому поводу сделать маленькое отступление. Выше я говорил о данных, определяющих положение различных тел системы; мне следовало бы сказать также о данных, определяющих их скорости; тогда мне пришлось бы различать, с одной стороны, скорость, с которой изменяются взаимные расстояния различных тел, а с другой — скорости переноса и вращения системы, т. е. скорости, с которыми изменяются ее абсолютное положение и ориентировка.

Для полного удовлетворения ума надо было бы закон относительности формулировать так:

Состояние тел и их взаимные расстояния в какой-нибудь момент, так же, как и скорости, с которыми изменяются эти расстояния в тот же момент, зависят только от состояния этих тел, их взаимных расстояний в начальный момент, а также от скоростей, с которыми последние изменялись в этот начальный момент; но они не будут зависеть ни от начального абсолютного положения системы, ни от ее абсолютной ориентировки, ни от скоростей, с которыми изменялись это абсолютное положение и ориентировка в начальный момент.

К сожалению, закон, сформулированный таким образом, не находится в согласии с опытами, по крайней мере с обычным их истолкованием.

Представим себе человека, перенесенного на некоторую планету, где небо постоянно закрыто густым покровом облаков, так что никогда не видно других светил; пусть жизнь этой планеты течет так, как если бы она была изолирована в пространстве. Все же этот человек мог бы заметить ее вращение, измеряя, например, ее сжатие (это производится обыкновенно при помощи астрономических наблюдений, но могло бы быть произведено и средствами чисто геодезическими) или повторяя опыт Фуко с маятником. Следовательно, абсолютное вращение этой планеты могло бы быть обнаружено.

Факт этот смущает философа, но физик вынужден его принять.

Известно, что из этого факта Ньютон заключил о существовании абсолютного пространства; я никак не могу согласиться с таким заключением; причины этого я покажу в третьей части, так как я не хотел бы касаться такого трудного вопроса мимоходом.

Таким образом, мне поневоле пришлось в формулировку закона относительности ввести скорости всякого рода среди данных, определяющих состояние тел.

Во всяком случае, трудность эта остается одной и той же как для геометрии евклидовой, так и для геометрии Лобачевского; поэтому я особенно не был обеспокоен ею и упомянул о ней только к случаю. Что важно, так это вывод: опыт не может решить выбор между Евклидом и Лобачевским.

Итак, как ни взглянуть на дело, невозможно найти разумное основание для геометрического эмпиризма.

6. Опыты обнаруживают только взаимные отношения тел; никакой опыт не даст и не может дать указаний об отношениях тел к пространству или о взаимных отношениях различных частей пространства.

«Да, — скажете вы на это, — единичный опыт недостаточен, так как он дает только одно уравнение со многими неизвестными; но когда я произведу достаточное количество опытов, я буду иметь достаточно уравнений, чтобы вычислить все мои неизвестные».

Но недостаточно знать высоту грот-мачты, — возражаю я, — чтобы вычислить возраст капитана. Определив все размеры корпуса корабля, вы будете иметь много уравнений, но все-таки вы не узнаете этого возраста. Все ваши измерения, относящиеся к частям корабельного корпуса, не могут обнаружить вам ничего, кроме того, что касается этих частей. Точно так и ваши опыты, как бы многочисленны они ни были: указывая только на взаимные отношения тел, они не скажут нам ничего о взаимных отношениях различных частей пространства.

7. Вы скажете, что если опыты относятся к телам, то они относятся по крайней мере к геометрическим свойствам тел.

Но, прежде всего, — что вы понимаете под геометрическими свойствами тел? Допустим, что здесь речь идет об отношениях тел к пространству; но эти свойства недоступны опытам, которые касаются только взаимного отношения между телами. Одного этого замечания было бы достаточно, чтобы показать, что речь идет о другом.

Постараемся прежде всего понять смысл выражения: геометрические свойства тел. Когда я говорю, что тело слагается из нескольких частей, я думаю, что этим я не высказываю суждения о геометрическом свойстве; это осталось бы справедливым, даже если бы я условился пользоваться неподходящим названием точек для наименьших рассматриваемых мною частей.

Когда я говорю, что такая-то часть такого-то тела находится в соприкосновении с такой-то частью другого какого-нибудь тела, я высказываю предложение, касающееся взаимных отношений этих двух тел, но не их отношений к пространству.

Я думаю, вы согласитесь со мной, что здесь мы имеем дело не с геометрическими свойствами; по крайней мере, вы, наверно, согласитесь, что эти свойства независимы от каких бы то ни было понятий метрической геометрии.

После этого представим себе, что имеется твердое тело, состоящее из восьми тонких железных стержней ОА, ОВ, ОС, OD, ОЕ, OF, OG и ОН, соединенных вместе своими концами О.

Пусть, с другой стороны, мы имеем второе твердое тело, например кусок дерева, на котором отметим чернилами три маленьких пятнышка; я назову их α, β, γ.

Пусть мы убедились затем, что можно привести в соприкосновение αβγ с AGO (т. е. одновременно α с A, β с G и γ с О), потом — что последовательно можно привести в соприкосновение αβγ с BGO, CGO, DGO, EGO, FGO, затем с АНО, ВНО, СНО, DHO, ЕНО, FHO, потом αγ последовательно с АВ, ВС, CD, DE, EF, FA.

Вот опытные факты, в которых можно удостовериться, не имея наперед никакого знания о форме или метрических свойствах пространства. Они никоим образом не относятся к «геометрическим свойствам тел». И эти факты будут невозможны, если тела, над которыми экспериментируют, движутся, следуя группе такой же структуры, как группа Лобачевского (я хочу сказать — по законам движения твердых тел в геометрии Лобачевского). Значит, достаточно этих фактов, чтобы убедиться, что тела эти движутся, следуя евклидовой группе, или, по крайней мере, что они движутся не в соответствии с группой Лобачевского.

Что эти факты совместимы с евклидовой группой, легко убедиться: стоит только представить себе αβγ неизменяемым твердым телом нашей обычной геометрии, имеющим форму прямоугольного треугольника, а точки А, В, С, D, E, F, G, Н — вершинами многогранника, образованного двумя правильными шестигранными пирамидами нашей обыкновенной геометрии, имеющими общим основанием ABCDEF, а вершинами — одна G, другая Н.

Предположим теперь, что вместо предыдущих фактов мы наблюдали, что можно опять-таки наложить αβγ последовательно на AGO, BGO, СGO, DGO, EGO, FGO, AHO, BHO, CHO, DHO, EHO, FHO, а потом можно αβ (отнюдь не αγ) наложить последовательно на АВ, ВС, CD, DE, EF и FA.

Вот опытные факты, которые можно было бы наблюдать, если бы неевклидова геометрия была правильна и если бы αβγ и OABCDEFGH были неизменяемыми твердыми телами: первое — в форме прямоугольного треугольника, а второе — в форме двойной правильной шестигранной пирамиды соответствующих размеров.

Итак, эти новые факты невозможны, раз тела движутся, следуя евклидовой группе; но они стали бы возможны, если бы допустить, что тела движутся подобно группе Лобачевского. Их было бы, следовательно, достаточно (если бы они наблюдались), чтобы убедиться, что рассматриваемые тела не движутся, следуя евклидовой группе.

Таким образом, не вводя никакой гипотезы о форме и природе пространства, об отношениях тел к пространству, не приписывая телам никакого геометрического свойства, я нашел факты, позволяющие мне показать, что доступные опытам тела в одном случае движутся, следуя структуре группы Евклида, в другом — следуя структуре группы Лобачевского.

Однако нельзя сказать, что первый ряд фактов может составить опыт, доказывающий, что пространство является евклидовым, а второй — опыт, доказывающий, что пространство неевклидово.

В самом деле, можно было бы представить себе тела, движущиеся таким образом, что они осуществляют второй ряд фактов. Доказательством служит то, что любой механик мог бы их построить, если бы он захотел взять на себя этот труд и если бы придавал этому значение. Однако из этого вы не заключили бы, что пространство неевклидово, тем более, что обыкновенные твердые тела продолжали бы существовать и тогда, когда механик построил бы странные тела, упомянутые мною: так что пришлось бы даже заключить, что пространство является одновременно евклидовым и неевклидовым.

Предположим, например, что мы имеем большую сферу радиуса R и что температура убывает от центра к поверхности этой сферы по закону, о котором я говорил, описывая неевклидов мир.

Мы могли бы иметь тела, расширением которых можно было бы пренебречь и которые вели бы себя как обыкновенные неизменяемые твердые тела; с другой стороны, мы могли бы иметь тела очень растяжимые, которые вели бы себя как неевклидовы твердые тела. Мы могли бы иметь две двойные пирамиды OABCDEFGH и О'А'В'С'D'E'F'G'Н' и два треугольника αβγ и α'β'γ'. Первая двойная пирамида была бы прямолинейной, вторая — криволинейной; треугольник αβγ был бы сделан из нерастяжимого, а треугольник α'β'γ' — из очень растяжимого вещества.

Тогда можно было бы обнаружить первый ряд фактов с двойной пирамидой ОАН и треугольником αβγ и второй — с двойной пирамидой О'А'Н' и треугольником α'β'γ'. И тогда опыт, по-видимому, убеждал бы сначала, что евклидова геометрия истинна, а затем — что она ложна.

Таким образом, опыты относятся не к пространству, а к телам.

8. Добавление. Для полноты мне следовало бы еще сказать о вопросе очень тонком, который потребовал бы подробного развития; я ограничусь здесь только резюмированием того, что я изложил в «Revue de Metaphysique et de Morale» и в «The Monist». Что мы хотим сказать, когда говорим, что пространство имеет три измерения?

Мы видели важность тех «внутренних изменений», которые нам открываются нашими мускульными ощущениями. Они могут служить для характеристики различных положений нашего тела. Возьмем за начальное одно из этих положений А. Когда мы переходим от этого начального положения к какому-нибудь другому положению B, мы испытываем ряд мускульных ощущений S, и этим рядом S определится B. Однако заметим, что часто мы рассматриваем два ряда S и S' как определяющие одно и то же положение B (потому что начальное и конечное положение A и B остаются теми же, но промежуточные положения и соответствующие ощущения могут различаться). Как же мы узнаем об эквивалентности этих двух рядов? Это возможно потому, что они могут служить для компенсации одного и того же внешнего изменения, или, более общо, потому, что когда речь идет о компенсации внешнего изменения, один из рядов может быть заменен другим.

Среди этих рядов мы выделили те, которые одни могут компенсировать внешнее изменение и которые мы назвали «перемещениями». Так как мы не можем различать два слишком близких перемещения, то совокупность этих перемещений представляет характерные черты физической непрерывности; опыт учит нас, что эта физическая непрерывность имеет шесть измерений; но мы не знаем еще, сколько измерений имеет пространство само по себе; нам надо решить сначала другой вопрос.

Что такое точка пространства? Все думают, что знают это, но это только иллюзия. Когда мы стараемся представить себе точку пространства, то она выступает в виде черного пятна на белой бумаге или как белое пятно от мела на черной доске; это всегда объект. Поэтому вопрос должен быть поставлен следующим образом: что значит, когда я говорю, что предмет B находится в той же точке, которую только что занимал предмет A? И еще: какой критерий позволит мне узнать это?

Я хочу этим сказать, что хотя сам я не шевелился (о чем свидетельствует мое мускульное чувство), но мой указательный палец, который только что касался предмета A, теперь касается предмета B. Я мог бы воспользоваться другими критериями, например средним пальцем или чувством зрения. Но первый критерий достаточен, я знаю, что если он отвечает утвердительно, то все другие критерии дадут тот же ответ. Я знаю это из опыта — я не могу знать этого à priori.

Поэтому-то я говорю также, что осязание не может действовать на расстоянии; это — только другой способ выражения того же экспериментального факта. И если я говорю, наоборот, что зрение действует на расстоянии, то это значит, что критерий, доставляемый зрением, может отвечать утвердительно, тогда как другие отвечают отрицательно.

В самом деле, пусть некоторый предмет даже после удаления дает свое отображение в той же точке сетчатки. Тогда зрение дает положительный ответ: предмет пребывает в той же точке, но осязание отвечает отрицательно, ибо палец, только что касавшийся предмета, теперь уже больше его не касается. Если бы опыт показал нам, что касание одним пальцем дает отрицательный ответ, тогда как касание другим — положительный, то мы сказали бы то же самое: что осязание действует на расстоянии.

Итак, для каждого положения моего тела мой указательный палец определяет некоторую точку; это и только это определяет точку пространства.

Каждому положению соответствует, таким образом, одна точка; но часто бывает, что та же точка соответствует нескольким различным положениям (например, в том случае, когда мы говорим, что наш палец не двигался, между тем как остальная часть тела переместилась). Мы выделяем, следовательно, среди изменений положения такие, при которых палец не двигается. Как мы приходим к этому? Только благодаря тому, что мы часто замечаем, как при этих изменениях предмет, находящийся в контакте с пальцем, не разрывает этого контакта.

Отнесем к одному и тому же классу все те положения, которые вытекают одни из других путем одного из выделенных нами таким образом изменений. Всем положениям одного и того же класса будет соответствовать одна и та же точка пространства. Поэтому каждому классу будет соответствовать точка, и каждой точке — класс. Но можно сказать: то, к чему относится опыт, не есть точка; это есть указанный класс изменений или лучше — соответственный класс мускульных ощущений.

И когда мы говорим, что пространство имеет три измерения, мы хотим просто сказать, что совокупность этих классов выступает перед нами с характерными чертами физической непрерывности трех измерений.

Мог бы показаться заманчивым тот вывод, что именно опыт показал нам, сколько измерений имеет пространство. Но в действительности наши опыты имели здесь дело еще не с пространством, а с нашим телом и с его отношениями к соседним предметам. Кроме того, они слишком грубы.

В нашем уме предсуществовала скрытая идея известного числа групп: это — те группы, теорию которых создал Ли. Какую из них мы выберем в качестве как бы эталона, с которым будем сравнивать реальные явления? И, выбрав эту группу, какую из ее подгрупп мы возьмем для характеристики точки пространства? Раньше нами руководил опыт, показывая, какой выбор лучше соответствует свойствам нашего тела. Но тут его роль ограничивается.

Опыт предков. Часто говорят, что если индивидуальный опыт не мог породить геометрию, то это не относится к опыту всего человеческого вида. Но что под этим понимается? Не хотят ли этим сказать, что если мы не в состоянии доказать постулат Евклида, то наши предки могли это сделать? Ни в коем случае. Этим хотят сказать, что в силу естественного отбора наш ум приспособился к условиям внешнего мира, что он усвоил себе геометрию, наиболее выгодную для вида, или, другими словами, наиболее удобную. Но это соответствует нашим выводам о том, что геометрия не истинна, а только выгодна.

Часть III Сила

Глава VI Классическая механика

Англичане преподают механику как науку экспериментальную; на континенте же ее всегда излагают как науку более или менее дедуктивную и априорную. Бесспорно, правы англичане; но как же оказалось возможным так долго держаться другого способа изложения? Почему ученые на континенте, старавшиеся избежать привычек своих предшественников, чаще всего оказывались не в состоянии полностью от них освободиться?

С другой стороны, если принципы механики не имеют иного источника, кроме опыта, не являются ли они в силу этого только приближенными и временными? Не могут ли новые опыты когда-нибудь заставить нас видоизменить эти принципы или даже совсем отказаться от них?

Трудность решения этих естественно возникающих вопросов происходит главным образом от того, что руководства по механике не вполне ясно различают, где опыт, где математическое суждение, где условное соглашение, где гипотеза.

Это еще не все:

1) Абсолютного пространства не существует; мы познаем только относительные движения; между тем механические факты чаще всего излагают так, как если бы существовало абсолютное пространство, к которому их можно было бы отнести.

2) Не существует абсолютного времени; утверждение, что два промежутка времени равны, само по себе не имеет смысла и можно принять его только условно.

3) Мы не способны к непосредственному восприятию не только равенства двух промежутков времени, но даже простого факта одновременности двух событий, происходящих в различных местах; я разъяснил это в статье, озаглавленной «La mesure du temps»[7].

4) Наконец, наша евклидова геометрия есть лишь род условного языка; мы могли бы изложить факты механики, относя их к неевклидову пространству, которое было бы основой, менее удобной, но столь же законной, как и наше обычное пространство; изложение слишком осложнилось бы, но осталось бы возможным.

Таким образом, абсолютное пространство, абсолютное время, даже сама геометрия не имеют характера вещей, обусловливающих собой механику; они так же мало предваряют существование механики, как мало французский язык логически предваряет существование истин, выражаемых по-французски.

Можно было бы попытаться изложить основные законы механики на языке, независимом от всех этих соглашений; тогда, без сомнения, можно было бы лучше отдать себе отчет в том, что представляют эти законы сами по себе; как раз это и попытался сделать (по крайней мере отчасти) Андрад в своих «Leçons de Mécanique physique».

Формулировка этих законов оказалась бы, конечно, гораздо более сложной, потому что все указанные выше соглашения и созданы именно для того, чтобы сократить и упростить эту формулировку.

Здесь я оставляю в стороне все эти трудности, за исключением вопроса об абсолютном пространстве. Я далек от мысли пренебрегать ими; но мы достаточно разобрали их в двух первых частях.

Итак, я допущу временно абсолютное время и евклидову геометрию.

Принцип инерции. Тело, на которое не действует никакая сила, может двигаться только прямолинейно и равномерно.

Есть ли это истина, присущая à priori нашему разуму? Если бы это было так, то как же не знали ее греки? Как могли они думать, что движение прекращается, как только перестает действовать вызвавшая его причина, или что всякое тело, не встречающее никаких препятствий со стороны, принимает круговое движение, как наиболее совершенное из всех движений?

Говорят, что скорость тела не может измениться, раз нет основания для ее изменения; но не можем ли мы с таким же правом утверждать, что не может измениться положение тела или кривизна его траектории, раз внешняя причина не вызывает их изменения?

Если принцип инерции не принадлежит к числу априорных истин, то не значит ли это, что мы имеем в нем экспериментальный факт? Но разве когда-нибудь экспериментировали над телами, на которые не действовала никакая сила? И как можно было бы получить уверенность, что на эти тела не действует никакая сила? Обыкновенно ссылаются на пример бильярдного шара, очень долгое время катящегося по мраморному столу; но на каком основании мы говорим, что на него не действует никакая сила? Не на том ли, что он слишком удален от всех других тел, чтобы испытывать от них сколько-нибудь заметное действие? Однако он не дальше от земли, чем в том случае, если бы был свободно брошен в воздухе; а всякий знает, что в таком случае он подвергся бы влиянию тяжести, обусловленному земным притяжением.

Преподаватели механики обычно быстро излагают пример с шаром; но они прибавляют, что принцип инерции проверяется косвенно в своих следствиях. Это — неправильное выражение; очевидно, они хотят сказать, что можно проверить различные следствия более общего принципа, по отношению к которому принцип инерции является только частным случаем.

Этот общий принцип я предложу сформулировать так:

Ускорение тела зависит только от положения этого тела и соседних тел и от их скоростей. Математик сказал бы, что движения всех материальных частиц Вселенной определяются дифференциальными уравнениями второго порядка.

Чтобы уяснить, что здесь мы имеем дело с естественным обобщением закона инерции, я позволю себе привести один воображаемый случай. Выше я указывал, что закон инерции не присущ нам a priori; другие законы были бы столь же хорошо, как и он, совместимы с принципом достаточного основания. Когда на тело не действует никакая сила, то мы могли бы вообразить, что неизменным является не скорость его, а его положение или его ускорение.

Итак, представим себе на минуту, что один из этих двух гипотетических законов есть закон природы и заступает место нашего закона инерции. Каково было бы его естественное обобщение? Поразмыслив минуту, мы это уясним.

В первом случае пришлось бы допустить, что скорость тела зависит только от его положения и от положения соседних тел; во втором — что изменение ускорения тела зависит только от положения этого тела и соседних тел, от их скоростей и от их ускорений.

Или, говоря математическим языком, дифференциальные уравнения движения были бы в первом случае первого порядка, во втором — третьего.

Видоизменим несколько наш воображаемый пример. Представим себе мир, аналогичный нашей Солнечной системе, лишь с тем отличием, что здесь все орбиты планет благодаря чистой случайности не имеют эксцентриситетов и наклонений. Представим себе далее, что массы этих планет слишком ничтожны, чтобы их взаимные возмущения были ощутимы. Астрономы, населяющие одну из этих планет, не преминули бы заключить, что орбита светила может быть только круговой и параллельной определенной плоскости; тогда положения светила в данный момент было бы достаточно для определения его скорости и всей его траектории. Закон инерции, который они установили бы, был бы первый из двух гипотетических законов, о которых я только что говорил.

Вообразим теперь, что вдруг через эту систему проходит с огромной скоростью массивное тело, пришедшее из отдаленных созвездий. Все орбиты окажутся сильно возмущенными. Но это еще не очень смутило бы наших астрономов; они догадались бы, что это новое светило является единственным виновником всего зла. Стоит ему удалиться, — сказали бы они, — и порядок восстановится сам собой; конечно, расстояния планет от Солнца уже не станут вновь такими же, какими они были до катастрофы, но когда не будет более возмущающего светила, орбиты снова станут круговыми. И только тогда, когда возмущающее тело было бы уже далеко, а орбиты, вместо того чтобы опять стать круговыми, превратились бы в эллиптические, — только тогда эти астрономы заметили бы свою ошибку и необходимость переделать всю свою механику.

Я несколько подробнее остановился на этих гипотезах, потому что, как мне думается, уяснить себе содержание нашего обобщенного закона инерции можно, только сопоставляя его с противоположным допущением.

Мы возвращаемся теперь к этому обобщенному закону инерции. Спрашивается, проверен ли он в настоящее время на опыте, и возможно ли это вообще? Когда Ньютон писал свои «Начала»[8], он смотрел на эту истину как на выработанную и доказанную экспериментально. Таковой она была в его глазах не только благодаря антропоморфному представлению, о котором речь будет дальше, но благодаря трудам Галилея; она была таковой и в силу законов Кеплера; действительно, согласно этим законам траектория планеты полностью определяется ее начальными положением и скоростью; а это как раз то, чего требует наш обобщенный принцип инерции. ...



Все права на текст принадлежат автору: Анри Пуанкаре.
Это короткий фрагмент для ознакомления с книгой.
О наукеАнри Пуанкаре