Все права на текст принадлежат автору: Кит Йейтс.
Это короткий фрагмент для ознакомления с книгой.
Математика жизни и смерти. 7 математических принципов, формирующих нашу жизньКит Йейтс

Кит Йейтс Математика жизни и смерти: 7 математических принципов, формирующих нашу жизнь

Моим родителям, Тиму, Нэнси и Мэри, которые научили меня читать, и моей сестре Люси, которая научила меня писать

© Соловьев А.В., перевод на русский язык, 2020

© Оформление. ООО «Издательство «Эксмо», 2021

Предисловие Почти все

Мой четырехлетний сын любит играть в саду. Его любимое занятие – выкапывать и рассматривать всяких ползучих тварей, особенно улиток. Если он достаточно терпелив, попавшие к нему в руки улитки, отойдя от первого шока, осторожно вылезают из своей раковины и начинают ползать по его маленьким ручкам, оставляя следы вязкой слизи. Когда же они ему наскучат, он равнодушно выбрасывает их в компостную кучу или на дрова за сараем.

В конце сентября прошлого года, после особенно напряженной охоты, откопав пять или шесть больших особей и избавившись от них, он подошел ко мне, когда я пилил дрова для костра, и спросил: «Папа, а сколько там, в саду, улиток?» Обманчиво простой вопрос, на который у меня не было хорошего ответа. Их могла быть сотня или тысяча. Честно говоря, разницы он бы не понял. Тем не менее его вопрос вызвал у меня интерес. С этим определенно стоило разобраться вместе.

Мы решили провести эксперимент. Ближайшим субботним утром мы пошли собирать брюхоногих. Через десять минут у нас оказалось в общей сложности 23 улитки. Я вытащил из заднего кармана маркер и пометил каждую крестиком. Как только они все были помечены, мы опорожнили ведро, выпустив улиток обратно в сад.

Через неделю мы совершили новый заход. На этот раз за десять минут мы добыли лишь 18 улиток. Осмотрев их внимательно, мы обнаружили у трех из них на раковинах крестик; у оставшихся 15 его не было. Вот и все, что нам требовалось для подсчета.

Идея заключается в следующем: количество улиток, которых мы поймали в первый день (23) – это некоторая часть общей численности брюхоногого населения сада, «перепись» которого мы хотим провести. Если мы вычислим, какую долю она составляет, то сможем найти размер всей популяции. Поэтому мы используем вторую выборку (тех, что наловили в следующую субботу). Число отмеченных особей в ней (3 из 18) должно составлять ту же долю, что и общее число отмеченных от всех особей в саду. Упростив это соотношение, мы обнаружим, что пометили каждую шестую особь (как вы можете видеть на рис. 1). Далее, умножив число помеченных в первый день особей (23) на 6, мы получим общее число улиток в саду – 138.


Рис. 1. Отношение количества повторно пойманных улиток (ОХ) к общему количеству пойманных во второй день (О) должно быть таким же, как и отношение количества пойманных в первый день (Х) к общему количеству улиток в саду, помеченных и не помеченных – 3:18 и 23:138 соответственно


После завершения этого мысленного расчета я обратился к своему сыну, который «присматривал» за собранными нами улитками. Как он прокомментировал мое заявление, что в саду обитает примерно 138 улиток? «Папа, – сказал он, не отводя глаз от осколков раковины, все еще липнущих к его пальцам, – я убил ее». Ну, тогда 137.

Этот простой математический метод, известный как мечение и повторный отлов, был разработан экологами для оценки размеров популяций животных. Вы можете использовать его самостоятельно, взяв два независимых образца и сравнив пересечения этих множеств. Так можно оценить количество лотерейных билетов, проданных на местной ярмарке, или посещаемость футбольного матча, не затрудняясь утомительным подсчетом по головам, а оперируя корешками билетов.

Метод мечения и повторного отлова используется и в серьезных научных проектах. Он может дать, например, жизненно важную информацию о колебаниях численности вида, находящегося под угрозой исчезновения. Оценка количества рыбы в водоеме[1] поможет рыбхозяйству определить, сколько можно выдать разрешений на рыбалку. Этот метод настолько эффективен, что его применение вышло за рамки экологии и позволяет узнать размер любых групп – от количества наркоманов среди населения [2] до числа погибших во время войны в Косово [3]. Такова практическая сила простых математических идей. Именно такие концепции мы разберем в этой книге, и именно их я регулярно использую в своей повседневной работе – математической биологии.

* * *
Когда я говорю людям, что занимаюсь математической биологией, в ответ мне обычно вежливо кивают, и этот кивок сопровождается неловким молчанием – будто я собираюсь проверить, помнят ли они теорему Пифагора или как решать квадратное уравнение. Люди не просто теряются – им сложно понять, какое отношение математика, которую они воспринимают как абстрактный, чисто теоретический и отвлеченный предмет, может иметь к биологии, которая, как правило, считается предметом практичным, «приземленным» и прикладным. С такой искусственной дихотомией, люди часто впервые сталкиваются еще в школе: если вам нравились естественнонаучные дисциплины, но алгебра особо не давалась, вас «спихивали» изучать биологию. Если вам, как и мне, нравились естественные науки, но вас (как и меня) не прельщала идея потрошить мертвые тушки (в начале курса по препарированию я как-то раз упал в обморок, когда зашел в лабораторию и увидел на своем рабочем месте рыбью голову), то вам приходилось идти на физику. Вместе им не сойтись…

Так было и со мной. В старших классах я бросил биологию и сдавал экзамены для поступления в институт по математике (основной и углубленный курс), физике и химии. В университете мне пришлось еще больше упорядочить свой учебный план. Меня расстраивало, что придется навсегда оставить биологию: предмет, который, как мне казалось, обладал невероятной силой, способной изменить жизнь к лучшему. Я с нетерпением предвкушал возможностью окунуться в мир математики, но опасался, что берусь за предмет, малоприменимый на практике. Сильнее ошибиться я не мог.

Я грыз гранит «голой» математики, которой нас учили в университете, запоминал доказательство теоремы о промежуточном значении или определение векторного пространства, но настоящим смыслом жизни для меня стали курсы прикладной математики. Лекторы рассказывали, как используют математику инженеры при строительстве мостов, чтобы те не входили в резонанс и не рушились из-за ветра, или авиаконструкторы – при проектировании крыльев, которые удерживают самолеты в небе. Я узнал о квантовой механике, которую физики привлекают к делу, чтобы понять странные явления субатомных масштабов, и о специальной теории относительности, которая исследует странные последствия постоянства скорости света. Я посещал курсы, объясняющие, как математику используют в химии, финансах и экономике. Я прочел о том, как математику пускают в ход в спорте для повышения результатов лучших спортсменов, и о том, как математику применяют в кинематографе для создания компьютерной анимации сцен, которые не могли бы существовать в реальности. Короче говоря, я узнал, что с помощью математики описать можно практически все.

На третьем курсе мне посчастливилось пройти курс математической биологии. Лектором был Фи́лип Майни, привлекательный североирландский профессор лет сорока с небольшим. Он не только был выдающейся личностью в своей области (позже его изберут членом Королевского общества [4]), но и, несомненно, любил эту тему, увлекая своим энтузиазмом всех студентов в аудитории.

Филип научил меня не только математической биологии, но и тому, что математики – живые люди, а не однозадачные роботы, какими их часто изображают. Математик – это нечто большее, чем «машина для переработки кофе в теоремы», как некогда высказался венгерский специалист по теории вероятностей Альфред Реньи. Когда я сидел в офисе Филипа, ожидая начала собеседования на позицию соискателя ученой степени, я увидел на стенах в рамочках множество писем с отказами, которые он получал от клубов Премьер-лиги, куда писал шуточные заявления о приеме на работу на вакантные тренерские места. В итоге мы больше говорили о футболе, чем о математике.

Именно в этот решающий момент моего академического образования Филип помог мне полностью переосмыслить биологию. Работая под его руководством над кандидатской диссертацией, я исследовал все – от процесса роения саранчи (и того, как его остановить) до прогнозирования комплексной картины развития эмбриона млекопитающего и разрушительных последствий, когда процесс перестает быть согласованным. Я строил модели, объясняющие, как формируется красивая пигментационная окраска птичьих яиц, и писал алгоритмы для отслеживания движения свободно плавающих бактерий. Я моделировал паразитов, уклоняющихся от воздействия нашей иммунной системы, и распространение смертельных болезней в популяции. Исследования, которые я вел во время работы над диссертацией, стали основой всей моей карьеры. Я до сих пор работаю в этих увлекательных областях биологии и в других, веду уже собственных аспирантов на своей нынешней должности доцента (старшего преподавателя) прикладной математики в Университете города Бат.

* * *
Как прикладной математик я считаю математику прежде всего практическим инструментом осмысления и упорядочивания нашего сложного мира. Математическое моделирование может обеспечить нам преимущество в повседневных ситуациях, и для этого не нужно задействовать сотни нудных уравнений или строк компьютерного кода. Математика по своей фундаментальной сути – шаблон. Каждый раз, когда вы смотрите на мир, вы выстраиваете собственную модель наблюдаемых закономерностей. Если вы можете выделить орнамент в бесконечно повторяющемся переплетении ветвей дерева или в многократной симметрии снежинки, то вы видите математику. Когда вы постукиваете ногой в такт музыкальному произведению или когда поете в душе, а ваш голос отражается и резонирует, вы слышите математику. Когда вы забиваете крученый мяч в сетку или ловите летящий по параболе крикетный мяч, вы практикуете математику. С каждым новым ощущением, каждым кусочком сенсорной информации, модели, которыми вы описываете то, что вас окружает, совершенствуются, перенастраиваются и становятся еще более подробными и сложными. Построение математических моделей, разработанных для описания нашей замысловатой реальности, – лучший способ понять правила, которые управляют окружающим миром.

Я считаю, что самые простые, самые важные модели – это истории и аналогии. Нагляднее всего демонстрируют неявное влияние математических принципов разнообразные – от невероятных до обыденных – примеры из жизни. Взглянув под правильными углом, мы сможем попытаться выявить скрытые математические правила, которые лежат в основе нашего повседневного практического опыта.

Семь глав данной книги исследуют подлинные истории переломных событий, в которых корректное (или некорректное) применение математики сыграло решающую роль. Это истории болезней, вызванных дефектными генами; истории банкротств, вызванных применением ошибочных алгоритмов; истории невинных жертв судебных ошибок и нечаянных жертв сбоев в работе программного обеспечения. Мы проследим за историями инвесторов, потерявших состояние, и родителей, потерявших детей, – и все из-за математических недоразумений. Мы столкнемся с этическими дилеммами – от проверок благонадежности до манипулирования статистикой. Мы исследуем такие насущные общественные проблемы, как политические референдумы, профилактика заболеваний, уголовное правосудие и искусственный интеллект. В этой книге мы увидим, что математике есть что сказать как по всем этим вопросам – фундаментальным важным, так и по многим другим.

Я буду не просто приводить примеры работы математических принципов в той или иной ситуации – я вооружу вас простыми и полезными в повседневной жизни математическими правилами и инструментами; они помогут занять лучшее место в поезде и сохранить хладнокровие, получив неожиданные результаты медицинских анализов. Я подскажу несложные приемы, которые позволят не запутаться с цифрами и числами. Нам придется немного запачкать руки типографской краской, разбираясь с тем, какие цифры скрывают броские газетные заголовки. Мы сведем близкое знакомство с математическими законами, лежащими в основе потребительской генетики, и понаблюдаем, как они действуют на практике, шаг за шагом отслеживая попытки остановить распространение смертельной болезни.

Как вы, надеюсь, уже поняли, это не учебник математики. И это не книга для математиков. На ее страницах вы не найдете ни одного уравнения. Смысл книги не в том, чтобы напомнить об уроках математики, которые вы посещали, вероятно, очень-очень давно. Совсем наоборот. Если когда-то вы разочаровались в математике и решили, что она не для вас, что она вам не дается, эта книга избавит от таких комплексов.

Я искренне верю, что математика – для всех и что все могут оценить ее красоту, лежащую в основе сложных явлений, с которыми мы сталкиваемся ежедневно. Срабатывание ложных сигналов тревоги у нас в мозгу – и ложное чувство уверенности, позволяющее нам спокойно спать по ночам; истории, которые навязывают нам соцсети, и мемы, которые распространяются через них, – все это тоже математика. Математика – это лазейки в законе и заплатки, которые их закрывают; технология, которая спасает жизни, и ошибки, которые подвергают их риску; вспышки смертельных болезней и лечебно-профилактические стратегии. Это самый многообещающий шанс найти ответы на фундаментальные вопросы Вселенной и нашего собственного вида. Математика ведет нас по бесчисленным путям жизни и поджидает у гробовой доски, чтобы взглянуть, как мы делаем последний вдох.

Глава 1 Мыслить шире: удивительная сила и отрезвляющие пределы экспоненциального поведения

Даррен Кэддик – инструктор по вождению из Калдикота, небольшого городка в Южном Уэльсе. В 2009 году его приятель сделал ему заманчивое предложение. Вложив всего лишь 3000 фунтов стерлингов в местный инвестиционный синдикат и убедив сделать то же самое еще двух человек, Даррен всего через пару недель получил бы 23 000 фунтов. Поначалу, посчитав, что это слишком хорошо, чтобы быть правдой, Кэддик сопротивлялся искушению. Но друзья в конце концов убедили его, что «никто ничего не потеряет, так как схема будет действовать бесконечно». Он решил попытать счастья и вложил свои сбережения в эту схему. Он потерял все и до сих пор, десять лет спустя, расхлебывает последствия.

Кэддик невольно оказался на дне пирамиды, которая просто не могла «действовать бесконечно». Запущенная в 2008 году программа Give and Take («Отдай и получи») перестала привлекать новых инвесторов и рухнула менее чем за год, но за это время свыше 10 000 вкладчиков со всей Великобритании вложили в нее более 21 млн фунтов. 90 % из них потеряли свои три тысячи. Инвестиционные схемы, основанные на том, что вкладчики вовлекают в них новых участников, чтобы получить свои дивиденды, заведомо обречены на неудачу. Количество новых вкладчиков, необходимых на каждом уровне схемы, растет пропорционально количеству людей, уже участвующих в ней. После пятнадцати этапов привлечения инвесторов в подобной пирамиде будет задействовано более 10 000 человек – вроде бы много, но схема «отдай и получи» легко позволяет заполучить такое количество участников. Однако еще через пятнадцать этапов для продолжения работы схемы в нее должен инвестировать уже каждый седьмой человек на планете. Этот феномен быстрого роста, неизбежным итогом которого становится крах всей системы из-за того, что она перестает привлекать новых участников (они заканчиваются физически), называется экспоненциальным ростом.

Сделанного не воротишь

Экспоненциальный рост – это возрастание любой величины пропорционально ее текущим размерам. Представьте, что утром, когда вы открываете пакет молока, туда, прежде чем снова наденете крышку, проникает одна клетка Streptococcus faecalis – бактерии стрептококка группы D. Стрептококк группы D – одна из бактерий, вызывающих скисание и свертывание молока, но разве единственная клетка – повод для беспокойства?[5] Возможно, вас насторожит способность клетки стрептококка группы D делиться в молоке, производя две дочерние клетки каждый час [6]. С каждым новым поколением число клеток увеличивается пропорционально текущему их числу, поэтому общее количество стрептококка растет в геометрической прогрессии.

Кривая, описывающая экспоненциальный рост, напоминает любимую роллерами, скейтбордистами и велосипедистами-трюкачами рампу в четверть трубы. Первоначально градиент рампы очень низкий – кривая очень пологая и набирает высоту лишь постепенно (что и демонстрирует первая линия на рис. 2).

Через два часа в вашем молоке резвятся уже 4 клетки стрептококка, а через четыре часа – 16. Пока что это не выглядит чем-то ужасным, так? Но, как и у рампы, высота экспоненциальной кривой и ее крутизна быстро растут. Рост в геометрической прогрессии поначалу представляется медленным, поэтому последующий резкий взлет может показаться неожиданным. Если оставить молоко на 48 часов, и экспоненциальный рост клеток стрептококка продолжится, то когда вы решите снова попить молока, в пакете может оказаться почти квадриллион (1 000 000 000 000 000) клеток – достаточно, чтобы свернулась ваша кровь, не говоря уж о молоке. В этот момент клеток будет больше, чем людей на нашей планете – 130 000 к одному. Экспоненциальные кривые иногда называют J-образными, так как они почти повторяют крутую кривую буквы J. Разумеется, по мере того, как бактерии используют питательные вещества в молоке и меняют его кислотность (рН), условия для роста ухудшаются, а его экспоненциальность сохраняется относительно недолго. На деле почти в каждом реальном сценарии долгосрочный экспоненциальный рост оказывается неустойчивым, а во многих случаях и патологическим, поскольку растущий объект истощает ресурсы донора, лишая его жизнеспособности. Так, устойчивый экспоненциальный рост клеток в организме является характерным признаком рака.


Рис. 2. J-образная кривая экспоненциального роста (слева) и спада (справа)


Другой пример экспоненциальной кривой – водная горка с эффектом свободного падения: в своей верхней части она настолько крута, что посетители этого аттракциона испытывают чувство невесомости. Спускаясь по такой горке, мы путешествуем по экспоненциальной кривой спада, а не по кривой роста (пример такого графика – вторая линия на рис. 2). Экспоненциальное затухание происходит, когда количество уменьшается пропорционально своему текущему объему. Представьте, что вы открываете огромный пакет М&Ms, выливаете их на стол и съедаете все конфетки, упавшие на стол буквой М кверху. Остальное кладете обратно в пакет – до завтра. На следующий день встряхните пакет и снова вывалите конфеты на стол. Снова съешьте все те, что лежат буквой M кверху, а остальное положите обратно. Каждый раз, когда вы выливаете конфеты из пакета, вы съедаете примерно половину от остатка, независимо от того, сколько конфет вы съели в первый раз. Количество конфет уменьшается пропорционально количеству оставшихся в пакете, то есть происходит экспоненциальное падение их общего числа. Точно так же экспоненциальная водяная горка начинается высоко и почти вертикально, так что скатывающийся падает очень быстро. Когда у нас много конфет, то и на съедение их выпадает много. Но кривая постепенно теряет свою крутизну, пока не станет почти горизонтальной к концу горки; чем меньше сладостей у нас остается, тем меньше конфет мы получаем с каждым новым днем. Каждая конкретная конфета падает буквой М вверх или вниз случайно и непредсказуемо, но предсказуемое затухание экспоненциальной кривой водной горки проявляется в количестве остающихся у нас с течением времени конфет.

В этой главе мы выявим скрытую связь между экспоненциальным поведением и повседневными явлениями: распространением эпидемии в популяции или мемов в интернете; быстрым ростом эмбриона и слишком медленным ростом денег на наших счетах; тем, как мы воспринимаем время, и даже тем, как взрывается ядерная бомба. По ходу дела мы постепенно и аккуратно раскроем всю трагедию пирамиды «Отдай и получи». Истории людей, потерявших сбережения в подобных схемах, демонстрируют, как важно уметь мыслить экспоненциально, что, в свою очередь, поможет нам предвосхищать невероятные порой темпы изменений в современном мире.

Дело больших процентов

В тех редчайших случаях, когда мне удается внести депозит на банковский счет, я утешаю себя тем, что какими бы мизерными ни были мои сбережения, растут они всегда в геометрической прогрессии. Действительно, банковский счет не предполагает никаких ограничений на экспоненциальный рост – по крайней мере, на бумаге. При условии, что процент начисляется на процент (то есть проценты прибавляются к текущему объему денег на счете, и новый процент начисляется уже на все вместе), общая сумма на счете увеличивается пропорционально его текущему размеру, что характерно для экспоненциального роста. Как выразился Бенджамин Франклин, «деньги зарабатывают деньги, а деньги, которые заработаны деньгами, зарабатывают еще больше денег». Со временем – если хватит этого времени и терпения – даже мизерный вклад способен превратиться в целое состояние. Однако не стоит торопиться запирать ваш отложенный на черный день резерв на депозитном счете. Инвестируя ежегодно по 100 фунтов под 1 % годовых, миллионером вы станете через 900 с лишним лет. Хотя рост по экспоненте часто ассоциируется со взрывным, при изначально невысоких темпах роста и малых вложениях увеличение по экспоненте будет исключительно неторопливым.

Обратная сторона медали – взимаемые с вас фиксированные проценты на непогашенную сумму (часто по высокой ставке), из-за чего задолженность по кредитным картам также может расти по экспоненте. Как и в случае с ипотекой, чем раньше – и чем больше – вы платите по кредиту, тем меньше вы в итоге платите в целом, не давая возможности экспоненте набрать взрывную пропорцию.

Жертвы пирамиды «Отдай и получи» говорили, что главной причиной, по которой они ввязались в эту схему, была необходимость выплачивать проценты по ипотеке и разобраться с другими долгами. Перед искушением быстро поправить свои финансовые дела за счет «легких денег» очень сложно устоять, несмотря даже на навязчивое ощущение, что что-то здесь не так. Как признает Кэддик, «старая поговорка, если что-то выглядит слишком хорошо, чтобы быть правдой, значит, это неправда, оказалась исключительно верной».

Создательницы пирамиды, пенсионерки Лора Фокс и Кэрол Чалмерс, дружили еще с католической школы. Обе они были столпами местного сообщества; одна – вице-президент местного «Ротари-клуба»[7], другая – уважаемая бабушка-матриарх. Они прекрасно понимали, что делают, создавая мошенническую инвестиционную схему. Программа «Отдай и получи» была тщательно продумана, чтобы заманить в ловушку потенциальных инвесторов, скрывая от них все подводные камни. В отличие от традиционной двухуровневой пирамиды, в которой человек, находящийся на вершине цепочки, получает деньги от привлеченных инвесторов напрямую, система «Отдай и получи» функционировала как четырехуровневая «самолетная» схема. В такой схеме человек, стоящий в начале цепочки, называется «пилотом». Пилот набирает двух «вторых пилотов», каждый из которых набирает двух «членов экипажа», а те набирают по два «пассажира». По формировании иерархической структуры из пятнадцати человек в схеме Фокс и Чалмерс восемь «пассажиров» платили по 3000 фунтов организаторам, которые передавали огромную сумму в 23 000 фунтов первому инвестору, снимая сливки в размере 1000 фунтов. Часть этих денег уходила на благотворительность – в ответ шли благодарственные письма от организаций вроде NSPCC[8], что добавляло схеме легитимности и респектабельности. Часть средств организаторы сохраняли, чтобы обеспечить бесперебойную работу схемы.

Получив свою долю, «пилот» выходит из схемы, и два «вторых пилота» повышаются в звании до «пилотов», ожидая, пока «члены экипажа» наберут восемь новых пассажиров на нижний этаж пирамиды. «Самолетные» схемы особенно соблазнительны для инвесторов, так как новым участникам нужно набрать всего двух человек, чтобы умножить свои вложения восьмикратно (хотя, конечно, эти два человека должны набрать еще двух и т. д.). В других, более «плоских» схемах для получения такой же прибыли необходимо привлечь гораздо больше участников. В крутой четырехуровневой структуре программы «Отдай и получи» «члены экипажа» никогда не брали деньги непосредственно у «пассажиров», которых они вовлекали в схему. Это гарантировало, что деньги никогда не перемещались между близкими знакомыми, ведь наиболее вероятными неофитами схемы становились друзья и родственники «членов экипажа». Такое разнесение «пассажиров» и «пилотов», выплаты которым те финансировали, облегчало привлечение новых участников и снижало вероятность, что вкладчики потребуют вернуть деньги. Это придавало инвестиционному проекту еще бóльшую привлекательность, что в итоге вовлекло в схему тысячи человек.

Уверенность вкладчиков в надежности инвестиций в пирамиду «Отдай и получи» подкреплялась историями прежних выплат, а порой такие выплаты производились прямо у них на глазах. Организаторы схемы, Фокс и Чалмерс, устраивали пышные частные вечеринки в отеле Somerset, который принадлежал Чалмерс. На вечеринках распространялись рекламные проспекты, пестревшие фотографиями участников схемы, развалившихся на усыпанных купюрами кроватях или потрясающих перед фотоаппаратом веерами из пятидесятифунтовых банкнот. На такую вечеринку организаторы приглашали кого-то из «невест» (в основном женщин), которые доросли до «должности» пилота в своей ячейке пирамиды и должны были получить выплаты. «Невестам» устраивали викторину из четырех простых вопросов вроде «Какая часть Пиноккио растет, когда он лжет?» перед аудиторией из двухсот – трехсот потенциальных инвесторов.

Фокс и Чалмерс считали, что викторина позволяет использовать лазейку в законе, легитимизируя подобную деятельность, раз для получения дивидендов требуется продемонстрировать некий «навык». На ролике с одного из таких мероприятий, сделанном на мобильный телефон, можно услышать крики Фокс: «Мы играем в азартные игры у себя дома, и это вполне легально!» Она ошибалась. Майлз Беннет, адвокат, ведущий дело, объяснил: «Викторина была настолько легкой, что проигравших не было – все, кто должен был получить выплаты, всегда их получали. Они даже могли попросить друга или члена оргкомитета помочь с ответами, и комитет знал эти ответы!»

Это не остановило Фокс и Чалмерс. Они использовали вечеринки с раздачей выплат и призов, чтобы прививать вирус их низкотехнологичной маркетинговой кампании. Глядя на «невест» с их чеками на 23 000 фунтов, многие из приглашенных гостей вкладывались в схему сами и призывали к этому своих друзей и членов семьи, формируя пирамиду с собой во главе. Если каждый новый инвестор передавал эстафету минимум двум другим, схема оставалась бесконечной. Запустив пирамиду весной 2008 года, Фокс и Чалмерс были единственными пилотами. Призывая друзей вкладывать деньги (и, по сути, помогать в мошенничестве), эта пара быстро привлекла к делу еще четырех человек. Те четверо набрали еще восемь, затем шестнадцать и так далее. Такое экспоненциальное удвоение числа неофитов в схеме очень похоже на удвоение числа клеток в растущем эмбрионе.

Экспоненциальный эмбрион

Когда моя жена была беременна нашим первым ребенком, мы, как и многие другие родители-новички, помешались на том, чтобы выяснить, что происходит в ее утробе. Мы позаимствовали ультразвуковой кардиомонитор, чтобы слушать сердцебиение нашего ребенка; мы записались на клинические испытания, чтобы получить дополнительные снимки; и мы читали сайт за сайтом, где рассказывалось, что происходило с нашей дочерью, как она растет, отчего мою жену тошнит каждый день. Чаще всего мы «зависали» на страничках типа «Как вырос ваш малыш», где каждую неделю размер еще не рожденного ребенка сравнивали с обычными фруктами, овощами или другими продуктами. Они описывают растущий плод примерно такими сентенциями: «Весом около полутора унций и размером около трех с половиной дюймов, ваш маленький ангелочек примерно с лимон» или «Ваша любимая маленькая репка теперь весит около пяти унций и примерно пять дюймов в длину с головы до пят».

На этих сайтах меня поражало то, как быстро менялись размеры плода от недели к неделе. На четвертой неделе ваш малыш был размером с маковое семя, а к пятой он раздувался до размера кунжутного! Иными словами, за неделю объем плода вырастал примерно в 16 раз.

Хотя, возможно, такой быстрый рост вовсе не так уж и удивителен. После оплодотворения яйцеклетки сперматозоидом на первоначальном этапе развития плода получившаяся зигота проходит последовательные раунды «дробления» – деления клеток; количество клеток в развивающемся эмбрионе быстро растет. Сначала она делится на две. Восемь часов спустя эти две делятся на четыре, еще через восемь часов четыре становятся восемью, которые вскоре превращаются в шестнадцать, и так далее – точно так же, как и количество новых вкладчиков на каждом уровне пирамидальной схемы. Последующие деления происходят почти синхронно каждые восемь часов. Таким образом, общее количество клеток растет пропорционально количеству клеток, составляющих эмбрион в данный момент времени: чем больше клеток сейчас, тем больше новых создается при последующем делении. В этом случае, поскольку при каждом делении каждая клетка создает ровно одну дочернюю клетку, коэффициент увеличения клеток в эмбрионе равен двум; иными словами, с каждым поколением клеток размер эмбриона удваивается.

Во время внутриутробного периода этап экспоненциального роста эмбриона, к счастью, относительно недолог. Если бы зародыш продолжал расти с постоянной экспоненциальной скоростью в течение всей беременности, то 840 синхронных делений клеток породили бы супермладенца, состоящего примерно из 10253 клеток. Для сравнения: если бы каждый атом во Вселенной сам был бы копией нашей Вселенной, то общее количество атомов во всех этих вселенных было бы примерно эквивалентно количеству клеток супермладенца. Разумеется, по мере развития эмбриона деление его клеток замедляется. В реальности количество клеток в среднем новорожденном составляет относительно скромное число – примерно два триллиона. Такой объем достигается меньше чем за 41 этап синхронного деления.

Разрушитель миров

Быстрый – в геометрической прогрессии – рост количества клеток необходим для создания новой жизни. Однако именно удивительная и ужасающая сила экспоненциального роста побудила физика-ядерщика Джулиуса Роберта Оппенгеймера провозгласить: «Теперь я Смерть, разрушитель миров». Этот рост был ростом не клеток и даже не отдельных организмов, но энергии, получаемой в результате расщепления атомных ядер.

Во время Второй мировой войны Оппенгеймер возглавлял лабораторию в Лос-Аламосе, где базировался «Проект Манхэттен» – программа разработки атомной бомбы. Возможность разделения ядра (крепко связанных протонов и нейтронов) тяжелого атома на более мелкие составляющие обнаружили немецкие химики в 1938 году. Этот процесс назвали ядерным делением по аналогии с бинарным делением, или расщеплением, одной живой клетки на две – совсем как в развивающемся эмбрионе. Было обнаружено, что деление происходит либо естественным путем – как радиоактивный распад нестабильных химических изотопов, либо искусственно индуцируется бомбардировкой ядра атома субатомными частицами в процессе, получившем название «ядерная реакция». В любом случае расщепление одного ядра на два более мелких, которые называются продуктами деления, сопровождается выделением большого количества энергии в виде электромагнитного излучения, а также кинетической энергии движения продуктов деления. Быстро выяснилось, что движущиеся продукты деления, образующиеся в результате первой ядерной реакции, можно использовать для воздействия на следующие ядра, расщепления еще большего количества атомов и высвобождения еще большего количества энергии – возникает цепная ядерная реакция. Если каждое ядерное деление производит в среднем более одного продукта, который можно использовать для расщепления последующих атомов, то теоретически каждое деление может привести к множеству других событий деления. Если этот процесс продолжается, количество реакций растет по экспоненте, высвобождая беспрецедентное количество энергии. При наличии материала, способного поддерживать неконтролируемую цепную ядерную реакцию, экспоненциальное увеличение энергии, высвобождаемой почти мгновенно, позволило бы сделать такой расщепляющийся материал основой для оружия невиданной мощи.

В апреле 1939 года, накануне начала войны во всей Европе, французский физик Фредерик Жолио-Кюри (зять Мари и Пьера Кюри, а также лауреат Нобелевской премии в соавторстве с женой) сделал важнейшее открытие. Он опубликовал в журнале Nature доказательства, что при делении, вызванном одним нейтроном, атомы изотопа урана U-235 выбрасывали в среднем 3,5 (позже это количестве пересчитали до 2,5) нейтрона высокой энергии [9]. Это был именно тот материал, который требовался для управления лавинообразной цепочкой ядерных реакций. «Гонка за бомбой» стартовала.

Одновременно с американцами свой проект ядерной бомбы разрабатывали и нацисты. В нем принимали участие ведущие немецкие физики во главе с нобелевским лауреатом Вернером Гейзенбергом. Оппенгеймер понимал, что ему в Лос-Аламосе придется непросто. Его главной задачей было обеспечить развивающуюся по экспоненте цепную ядерную реакцию, позволяющую практически мгновенно высвободить огромное количество энергии (что и требовалось от ядерной бомбы). Для получения такой самоподдерживающейся и достаточно быстрой цепной реакции ему нужно было добиться, чтобы необходимое количество нейтронов, испускаемых при расщеплении атомов изотопа урана-235, поглощалось ядрами других атомов урана-235, что, в свою очередь, привело бы уже к их расщеплению. Он обнаружил, что в природном уране слишком много испускаемых нейтронов поглощается атомами U-238 (другой значимый изотоп, составляющий 99,3 % природного урана)[10], а это означает, что любая цепная реакция не растет, а, наоборот, затухает по экспоненте. Следовательно, для получения цепной реакции Оппенгеймеру необходимо было получить исключительно чистый U-235, то есть обогатить урановую руду, удалив из нее как можно больше урана-238.

Эти соображения породили идею о так называемой критической массе расщепляющегося материала. Критическая масса урана – это количество материала, необходимое для осуществления самоподдерживающейся цепной ядерной реакции. Она зависит от целого ряда факторов. Пожалуй, наиболее важным является чистота урана-235. Даже при доле U-235 в 20 % доле (по сравнению с естественным его содержанием в 0,7 %) его критическая масса составляет более 400 килограммов, из чего следует, что без урана высокой чистоты ядерную бомбу не сделать. Однако получение достаточного объема чистого урана для достижения сверхкритичности поставило перед Оппенгеймером другую проблему – теперь надо было сконструировать саму бомбу. Очевидно, что просто запихнуть критическую массу урана в бомбу в надежде, что она не взорвется сама по себе, было невозможно. В этом случае естественное расщепление хотя бы одного ядра спровоцировало бы цепную реакцию, инициируя экспоненциальный взрыв.

Угроза проиграть гонку нацистским ядерщикам заставляла Оппенгеймера и его команду поторапливаться. Вскоре у них родилась концепция бомбы. Предложенная ими модель бомбы пушечного типа предполагала, что взрыв такой бомбы будет инициироваться «выстрелом» одной подкритической массы урана в другую для создания единой сверхкритической массы. Выстрел должен был осуществляться с использованием обычной взрывчатки. Затем спонтанное деление ядер, испускающих инициирующие нейтроны, вызывало бы цепную реакцию. Разделение общей критической массы урана на две подкритические массы гарантировало, что бомба не взорвется раньше времени. Получив уран высокой (около 80 %) степени обогащения, разработчики довели необходимую для критичности массу ядерного вещества всего до 20–25 килограммов. Но Оппенгеймер не желал рисковать – неудача проекта означала бы, что первенство в разработке ядерного оружия перейдет к противнику, поэтому он настаивал, что очищенного урана нужно гораздо больше.

К тому времени, когда наконец чистый уран был получен в необходимом объеме, война в Европе уже закончилась. Однако война на Тихом океане продолжалась, и Япония не собиралась сдаваться, несмотря на тяжелые военные неудачи. Понимая, что сухопутное вторжение в Японию значительно увеличит и без того серьезные потери американцев, генерал Лесли Гровс, директор Манхэттенского проекта, издал директиву, разрешающую применение атомной бомбы против Японии, как только позволят погодные условия.

После нескольких дней плохой погоды, вызванной тайфуном, 6 августа 1945 года в голубом небе над Хиросимой взошло солнце. В 07:09 утра в небе над Хиросимой был замечен американский самолет, и по всему городу разнеслись сирены воздушной тревоги. Семнадцатилетняя Акико Такакура недавно устроилась на работу в банк. Она как раз направлялась туда, когда прозвучала сирена. Вместе с другими пассажирами Акико укрылась в одном из городских бомбоубежищ.

В Хиросиме воздушную тревогу объявляли нередко; город был стратегическим военным центром, там размещался штаб японской Второй Основной армии. Однако до поры бомбардировки, обрушившиеся на многие другие японские города, обходили Хиросиму стороной. Акико и ее спутники не знали, что Хиросиму не трогают намеренно, чтобы американцы могли точно оценить весь масштаб разрушений, вызванных новым оружием.

В половине седьмого прозвучал отбой воздушной тревоги. Летящий над головами В-29 выглядел не более зловещим, чем метеорологический самолет. Когда Акико вышла из своего бомбоубежища вместе со многими другими, она вздохнула с облегчением: сегодня утром бомбить не будут.

Акико и другие жители Хиросимы, продолжив свой путь на работу, не подозревали, что самолет-разведчик В-29 передавал по радио информацию о погодных условиях над Хиросимой на «Энолу Гэй» – самолет, на борту которого находилась ядерная бомба пушечного типа по имени «Малыш». Дети шли в школы, рабочие и клерки – на фабрики и в офисы. Акико добралась до своего банка в центре Хиросимы. Женщины должны были приходить на работу за полчаса до мужчин, чтобы убраться в офисе, подготовив его к началу рабочего дня, поэтому к десяти минутам девятого Акико уже усердно трудилась в почти безлюдном здании.

В 08:14 в прицеле пилота «Энолы Гэй» полковника Пола Тиббетса появился Т-образный мост Айои. 4400-килограммовый «Малыш» вышел из бомболюка и начал 6-мильный спуск в направлении Хиросимы. После 45 секунд свободного падения бомба взорвалась менее чем в миле[11] над землей. Одна подкритическая масса урана была выпущена в другую, создав сверхкритическую массу, готовую к взрыву. Почти мгновенное спонтанное деление атома высвободило нейтроны, по крайней мере один из которых был поглощен атомом урана-235. Этот атом, в свою очередь, распался и высвободил больше нейтронов, которые, в свою очередь, были поглощены еще бóльшим количеством атомов. Процесс быстро ускорялся, что привело к экспоненциальной цепной реакции и одновременному высвобождению огромного количества энергии.

Протирая рабочие столы своих коллег-мужчин, Акико выглянула из окна и увидела яркую белую вспышку, похожую на полоску горящего магния. Она, конечно, не знала, что экспоненциальный рост позволил бомбе в одно мгновение высвободить энергию, эквивалентную 30 миллионам тротиловых шашек. Температура бомбы повысилась до нескольких миллионов градусов – жарче, чем на поверхности Солнца. Десятую долю секунды спустя ионизирующее излучение достигло земли, нанеся сокрушительный радиационный урон всему живому, что подверглось его воздействию. Еще через секунду над городом взлетел огненный шар 300 метров в диаметре и с температурой в тысячи градусов Цельсия. Свидетели говорили, что в тот день солнце над Хиросимой взошло дважды. Взрывная волна, двигаясь со скоростью звука, сровняла с землей здания по всему городу. Она бросила Акико в другой конец комнаты, и девушка потеряла сознание. Инфракрасное излучение обжигало незащищенную кожу на мили во всех направлениях. Люди, находившиеся рядом с эпицентром взрыва, мгновенно испарялись или обугливались до золы.

От самых страшных последствий взрыва Акико защитила сейсмостойкая конструкция здания. Придя в себя, она выбралась на улицу и обнаружила, что чистого голубого утреннего неба больше нет. Второе солнце над Хиросимой зашло почти так же быстро, как и взошло. Улицы были темны, затянуты пылью и дымом. Куда ни кинь взгляд, везде лежали тела. Акико пережила ужасный экспоненциальный взрыв, оказавшись всего в 260 метрах от его эпицентра, – это удалось единицам.

По оценкам, в результате взрыва бомбы и последовавших за ним пожаров, которые охватили город, погибло около 70 тысяч человек, 50 тысяч из которых были гражданскими лицами. Большинство зданий города были полностью разрушены. Пророческая сентенция Оппенгеймера сбылась. Насколько бомбардировки Хиросимы и, спустя три дня, Нагасаки, в контексте завершения Второй мировой войны были оправданны, и по сей день остается предметом споров.

«Мирный» атом

Со всеми плюсами и минусами атомной бомбы как таковой, проведенное в рамках Манхэттенского проекта тщательное изучение экспоненциальных цепных реакций, возникающих при расщеплении атома, наделило нас технологией, необходимой для получения чистой и безопасной энергии, производство которой не связано с выбросами углерода, – ядерной энергетикой. Один килограмм урана-235 может высвободить примерно в три миллиона раз больше энергии, чем получается при сжигании такого же количества угля [12]. Однако ядерная энергетика пользуется дурной славой – несмотря на доказательства обратного, считается, что она небезопасна и наносит вред окружающей среде. Отчасти в этом виноват экспоненциальный рост.

Вечером 25 апреля 1986 года [13] Александр Акимов, начальник смены, заступил на ночную вахту на электростанции. Через пару часов должен был начаться эксперимент по стресс-тестированию системы охлаждения. Приступая к эксперименту, Александр, вероятно, думал, как ему повезло иметь стабильную работу на Чернобыльской АЭС, когда Советский Союз разваливался, а 20 % его граждан жили в нищете.

Примерно в 11 часов вечера в рамках программы испытаний Акимов с пульта управления ввел в активную зону реактора ряд регулирующих стержней между урановыми топливными стержнями для того, чтобы снизить мощность реактора примерно до 20 % от нормального рабочего уровня. Регулирующие стержни поглощали часть нейтронов, высвобождающихся при атомном делении, чтобы те не вызвали расщепление слишком большого количества других атомов. Это остановило процесс быстрого развития цепной реакции, которая – свободно нарастая по экспоненте – вызывает взрыв в атомной бомбе. Однако Акимов случайно ввел слишком много стержней, что привело к значительному падению мощности станции. Он знал, что это вызовет так называемое отравление реактора – появление материала, который, подобно регулирующим стержням, еще больше замедлит реактор и понизит температуру, что приведет к еще большему отравлению и дальнейшему охлаждению в цикле положительной обратной связи. В панике он переключил управление системой безопасности на себя, выведя из активной зоны реактора в режиме ручного контроля более 90 % регулирующих стержней, чтобы предотвратить его полную деструктивную остановку.

По мере постепенного увеличения мощности реактора показатели на шкалах датчиков росли у Акимова на глазах, и сердце его снова застучало размеренно. Предотвратив кризис, он перешел к следующему этапу испытаний, отключив насосы. Акимов не знал, что резервные системы перекачивали охлаждающую реактор воду не так быстро, как следовало бы, а обнаружить эту проблему на раннем этапе не удалось. Поступавшая в недостаточном объеме вода быстро испарялась, что снижало ее способность как поглощать нейтроны, так и охлаждать сердечник. Возросшее выделение тепла и повышение мощности привели к тому, что в пар мгновенно превращалось все больше воды. А это вело к дальнейшему увеличению мощности, создавая еще один, куда более смертоносный цикл положительной обратной связи. Оставшиеся вне ручного контроля несколько регулирующих стержней были автоматически введены в активную зону, чтобы сдержать повышенную теплоотдачу, но их не хватало. Понимая, что мощность растет слишком быстро, Акимов нажал кнопку аварийного отключения, предназначенную для введения в активную зону всех стержней управления и отключения питания сердечника, но было слишком поздно. Когда стержни погрузились в реактор, они вызвали резкий всплеск выходной мощности, что привело к перегреву активной зоны, разрушению некоторых топливных стержней и блокировке дальнейшего ввода регулирующих. По мере экспоненциального роста тепловой энергии выходная мощность превысила обычный рабочий уровень в десять с лишним раз. Охлаждающая вода испарялась, вызвав два массивных паровых взрыва, которые уничтожили активную зону и разбросали расщепляющийся радиоактивный материал далеко вокруг.

Отказываясь верить сообщениям о взрыве активной зоны, Акимов передал неверную информацию о состоянии реактора, что задержало жизненно важные работы по предотвращению рассеивания радиоактивных веществ. В конце концов, осознав настоящий масштаб катастрофы, он работал без защиты со своей сменой, чтобы закачать воду в разрушенный реактор. Полученные ими дозы облучения составили 200 грэй [14]. Смертельная доза – около десяти грэй, а значит, что ничем не защищенные работники получили их менее чем за пять минут. Акимов умер через две недели после аварии от острой лучевой болезни.

Официально число погибших в чернобыльской катастрофе – всего 31 человек, хотя по некоторым оценкам, их общее количество, включая и ликвидаторов последствий аварии, значительно выше, не говоря уже о гибели людей в результате рассеивания радиоактивных материалов на значительном расстоянии от электростанции. Пожар, начавшийся в разрушенной активной зоне реактора, не могли потушить девять дней. В результате него в атмосферу было выброшено в сотни раз больше радиоактивных материалов, чем во время бомбардировки Хиросимы, что повлекло за собой широкомасштабные экологические последствия почти для всей Европы [15].

Так, 2 мая 1986 года в горных районах Великобритании прошли необычайно сильные ливни. Капли этого дождя содержали радионуклиды – продукты ядерного распада, поднятые взрывом в атмосферу – стронций-90, цезий-137 и йод-131. В общей сложности около 1 % радиации, выброшенной из чернобыльского реактора, выпало на территорию Великобритании. Эти радиоизотопы были поглощены почвой, откуда попали в растущую траву, которую съели овцы, пасшиеся на той земле. Результат – радиоактивное мясо.

Министерство сельского хозяйства незамедлительно ввело ограничения на продажу и перегон овец в пострадавших районах, что затронуло почти девять тысяч ферм и более четырех миллионов овец. Овцевод Дэвид Элвуд, фермер из Озерного края, с трудом верил в то, что происходит. Облако, несущее невидимые, почти незаметные радиоизотопы, сильно сказалось на его благополучии. Каждый раз, собираясь продать овец, он должен был изолировать их и вызвать государственного инспектора для проверки уровня радиации. Каждый раз инспекторы говорили, что ограничения продлятся еще год или около того. Элвуд жил под этим облаком 25 с лишним лет, пока ограничения не были окончательно сняты в 2012 году.

Правительству, впрочем, было бы гораздо проще проинформировать Элвуда и других фермеров о том, когда уровень радиации станет достаточно безопасным для свободной продажи овец. Уровни радиации удивительно предсказуемы благодаря феномену экспоненциального распада.

Наука датирования

Экспоненциальный распад, по прямой аналогии с экспоненциальным ростом, описывает изменение количества, которое происходит со скоростью, пропорциональной его текущему значению, – помните, как снижалось число конфет M&Ms каждый день и как кривая водной горки показывала это. Экспоненциальный распад описывает такие разные вещи, как вывод медицинских препаратов из организма [16] и скорость оседания пенной шапки на пинте пива [17]. В частности, он отлично описывает, с какой скоростью снижается со временем уровень излучения радиоактивного вещества [18].

Нестабильные атомы радиоактивных материалов самопроизвольно испускают энергию в виде излучения даже без внешней инициации. Этот процесс называется радиоактивным распадом. На уровне отдельного атома процесс распада случаен – квантовая теория полагает, что начало распада конкретного атома предсказать невозможно. Но когда речь идет о материале, состоящем из огромного количества атомов, снижение радиоактивности – это предсказуемый экспоненциальный распад. Количество атомов уменьшается пропорционально количеству оставшихся. Каждый атом распадается независимо от других. Характеризующим признаком скорости снижения уровня радиоактивности служит период полураспада вещества – время, необходимое для распада половины нестабильных атомов. Поскольку распад идет по экспоненте, время, необходимое для снижения уровня радиоактивности вещества наполовину, всегда будет одинаковым, независимо от стартового объема радиоактивного материала. Ежедневное поедание конфет, выпавших на стол буквой М кверху, определяет период полураспада пакета M&Ms в один день – ожидается, что мы будем съедать половину сладостей каждый раз, когда вываливаем их из пакета.

Явление экспоненциального распада радиоактивных атомов лежит в основе радиометрического (или радиоизотопного) датирования – метода, используемого для определения возраста материалов по уровню их радиоактивности. Соотнося известную долю успевших распасться радиоактивных атомов с их общим содержанием в веществе, теоретически можно установить возраст любого материала, испускающего атомное излучение. Радиометрическое датирование применяется очень широко – с его помощью оценивают возраст Земли и датируют древние артефакты, такие как свитки Мертвого моря [19]. Если вы когда-нибудь задумывались о том, как, черт возьми, люди узнали, что археоптериксу 150 миллионов лет[20] или что «ледяной человек» Эци умер 5300 лет назад [21], имейте в виду, что без радиоизотопного датирования тут наверняка не обошлось.

Совершенствование методик радиометрического датирования сегодня позволяет получать гораздо более точные результаты, поэтому эти технологии (наряду с другими археологическими методами) широко используют в сфере судебной археологии, раскрывая преступления измерением экспоненциального распада радиоизотопов. В ноябре 2017 года при помощи радиоуглеродного датирования выяснилось, что самый дорогой виски в мире – подделка. Бутылка, маркированная как односолодовый виски Macallan 130-летней выдержки, оказалась дешевой смесью спиртов 1970-х годов – к невероятной досаде одного швейцарского отеля, просившего за один шот напитка 10 тысяч долларов. В декабре 2018 года в ходе последующего расследования в той же лаборатории обнаружилось, что более трети протестированных «старинных» сортов шотландских виски также оказались подделками. Но, пожалуй, наибольший резонанс вызывает использование радиоизотопного датирования для проверки возраста исторических произведений искусства.

До Второй мировой войны считалось, что существует только 35 картин, принадлежащих кисти признанного мастера старой голландской школы живописи Яна Вермеера. В 1937 году во Франции было обнаружено новое выдающееся полотно. Искусствоведы восторгались «Христом в Эммаусе», называя картину одной из величайших работ Вермеера. Ее практически тут же купили за огромные деньги для музея Бойманса – Ван Бёнингена в Роттердаме. В течение следующих нескольких лет появился еще ряд ранее неизвестных произведений Вермеера. Их быстро разбирали богатые голландцы – в том числе и для того, чтобы предотвратить расхищение важных культурных ценностей нацистами. Тем не менее одна из работ, «Христос и грешница», досталась Герману Герингу, которого Гитлер назначил своим преемником.

После войны, когда этот потерянный Вермеер был обнаружен в австрийской соляной шахте вместе с большей частью награбленных нацистами произведений искусства, началось масштабное расследование, чтобы выяснить, кто отвечал за продажу тех картин. В конце концов их путь отследили до Хана ван Мегерена, неудавшегося художника, чьи работы многие искусствоведы пренебрежительно называли вторичными, производными от полотен старых мастеров. Неудивительно, что сразу после ареста на ван Мегерена обрушился гнев голландской общественности. Прежде всего, его подозревали в продаже голландских культурных ценностей нацистам, а это преступление каралось смертной казнью. Более того, на заработанные от продажи картин огромные суммы он на протяжении всей войны жил в Амстердаме на широкую ногу, когда многие жители города голодали. Отчаянно пытаясь спасти жизнь, ван Мегерен заявил, что картина, проданная Герингу, была не настоящим произведением Вермеера, а фальшивкой, которую нарисовал он сам. Он также признался в изготовлении других псевдо-Вермееров и в фабрикации обнаруженных незадолго до того работ Франса Халса и Питера де Хоха.

Специальная экспертная комиссия по разоблачению подделок проверила слова ван Мегерена, в подтверждение которых он нарисовал по требованию комиссии новую фальшивку «Иисус и книжники». К началу суда в 1947 году ван Мегерен был уже провозглашен национальным героем, который не только утер нос спесивым искусствоведам, что некогда издевались над ним, но и обманул одного из высших руководителей нацистов, всучив ему никчемную подделку. С ван Мегерена сняли обвинение в сотрудничестве с нацистами и приговорили всего лишь к году тюрьмы за подлог и мошенничество, но он умер от сердечного приступа до того, как приговор вступил в силу. Несмотря на решение суда, многие (особенно те, кто купил «Вермееров» ван Мегерена) все еще верили в подлинность картин и продолжали оспаривать утверждения комиссии.

В 1967 году «Христа в Эммаусе» подвергли повторной проверке с использованием радиометрической датировки по урано-свинцовому методу по изотопу свинца-210. Ван Мегерен исключительно скрупулезно подходил к созданию подделок, используя в основном те же материалы, которые использовал бы Вермеер. Но он не мог контролировать технологию производства этих материалов. Добиваясь максимального правдоподобия, он писал на подлинных холстах XVII века и смешивал свои краски по старинным рецептам, но свинец, содержавшийся в его свинцовых белилах, был извлечен из руды совсем недавно. Природный свинец содержит радиоактивный изотоп свинца-210 и его материнский радиоактивный материал (при распаде которого и образуется свинец) радий-226. При получении свинца из руды бóльшая часть радия-226 удаляется, в обогащенной руде остаются лишь мизерные его количества, а значит, в ней появится совсем немного новых изотопов свинца-210. Сравнивая концентрацию свинца-210 и радия-226 в пробах, можно точно датировать свинцовую краску, используя тот факт, что период полураспада свинца-210 известен, а сам процесс происходит по экспоненте. В «Христе в Эммаусе» было обнаружено гораздо больше свинца-210, чем было бы, если бы его действительно написали на 300 лет раньше. Это установило наверняка: подделки ван Мегерена не могли быть написаны Вермеером в XVII веке, поскольку свинец, содержавшийся в красках ван Мегерена, еще не был добыт[22].

Вирус из ведра с ледяной водой

Будь ван Мегерен нашим современником, его работы были бы аккуратно собраны в доступной статье под кричащим заголовком вроде «Девять картин-подделок, в подлинность которых вы верили» и разошлись бы по интернету. Современные фальшивки, такие как ненастоящая фотография кандидата в президенты США и миллионера Митта Ромни, который якобы выстраивает шестерых сторонников, одетых в майки с буквами, в ряд так, что читается RMONEY вместо ROMNEY[23], или обработанная в фотошопе фотография «туриста», якобы позирующего на смотровой площадке Южной башни Всемирного торгового центра, не подозревая о приближении низко летящего самолета на заднем плане, достигли такого уровня глобального распространения, о котором и не мечтали спецы по вирусному маркетингу.

Вирусный маркетинг – это феномен, при котором рекламные цели достигаются с помощью самовоспроизводящегося процесса, схожего с процессом распространения вирусного заболевания (математику которого мы рассмотрим более подробно в главе 7). Один человек в сети заражает других, которые, в свою очередь, заражают следующих. До тех пор, пока каждый вновь «инфицированный» человек заражает, по крайней мере, одного, аудитория, «зараженная» вирусным сообщением, будет расти в геометрической прогрессии. Вирусный маркетинг – это субдисциплина области, известной как меметика, в которой «мем» – стиль, поведение или, что очень важно, идея – распространяется между людьми через социальную сеть, так же, как и вирус. Термин «мем» предложил в 1976 году Ричард Докинс в книге «Эгоистичный ген»[24], чтобы объяснить, как распространяется культурная информация. Он определил мемы как единицы культурной информации (или передачи). По аналогии с генами – единицами передачи наследственной информации – он предложил, что мемы могут самовоспроизводиться и мутировать. Примеры мемов, которые он приводил, включали в себя мелодии, крылатые фразы и – что характеризует удивительную невинность тех времен, когда он писал свою книгу, – технологии изготовления горшков или арочных сводов. Конечно, в 1976 году Докинс не знал интернета в его нынешнем виде, позволяющего распространять когда-то невообразимые (и, возможно, бессмысленные) мемы, включая #thedress, #rickrolling и #Lolcats [25].

Примером одной из самых успешных и, вероятно, по-настоящему органичных вирусных маркетинговых кампаний стало публичное обливание ледяной водой. Летом 2014 года в Северном полушарии любимым делом было заснять, как вы опрокидываете ведро ледяной воды себе на голову, а затем предлагаете другим повторить тот же трюк, при этом жертвуя некоторую сумму на благотворительность. Даже я повелся на это.

Придерживаясь классического формата кампании, промокнув с головы до пят, я предложил повторить свой опыт двум другим людям: выложив ролик в соцсеть, я отметил их там. Как и в случае с нейтронами в ядерном реакторе, до тех пор, пока в среднем больше одного человека принимают вызов в ответ на каждое размещенное видео, мем не только самовоспроизводится, но и приводит к цепной реакции, нарастающей по экспоненте. ...



Все права на текст принадлежат автору: Кит Йейтс.
Это короткий фрагмент для ознакомления с книгой.
Математика жизни и смерти. 7 математических принципов, формирующих нашу жизньКит Йейтс