Все права на текст принадлежат автору: Джесс Либерти.
Это короткий фрагмент для ознакомления с книгой.
Освой самостоятельно С++ за 21 день.Джесс Либерти

Джесс Либерти Освой самостоятельно C++ за 21 день.

Об авторе

Джесс Либерти (Jesse Liberty) — автор шести книг, посвященных языку C++ и объектно-ориентированному анализу и проектированию, а также постоянный автор журнала C++ Report. Он возглавляет компанию Liberty Associates, Inc. (http://www.libertyassociates.com), которая предоставляет услуги по обучению в Internet объектно-ориентированной разработке программных продуктов, а также занимается наставничеством, консультированием и контрактным программированием.

Джесс удостоился звания заслуженного программиста (Distinguished Software Engineer at AT&T) и работал в должности вице-президента отдела разработки Ситибанка (Citibank's Development Division). Он живет в окрестностях Кембриджа (шт. Массачусетс) с женой Стеси (Stacey) и дочерьми Робин (Robin) и Речел (Rachel). С ним можно связаться через Internet по адресу: jliberty@libertyassociates.com. Джесс осуществляет поддержку книги через свой же Web-узел по адресу: http://www.libertyassociates.com — щелкните на гиперссылке Books and Resources (Книги и ресурсы).

Посвящение

Немеркнущей памяти Давида Ливайна (David Levine) посвящается.

Благодарности

Третье издание этой книги — еще одна возможность выразить благодарность всем тем, без чьей поддержки и помощи написать ее в буквальном смысле было бы невозможно. Прежде всего, эти слова вновь относятся к Стейси, Робин и Рейчел Либерти.

Хочу также поблагодарить моих редакторов в издательстве Sams, профессионалов высшего класса. Огромное спасибо Крису Денни (Chris Denny) и Брэду Джонс (Brad Jones) за их работу над предыдущими изданиями книги. Особую признательность хочу выразить Трейси Данкельбергер (Tracy Dunkelberger), Холли Олендер (Holly Allender), Сину Диксону (Sean Dixon), Хезер Толбот (Heather Talbot), Барбаре Хече (Barbara Hacha) и Моне Браун (Mona Brown).

Кроме того, я очень благодарен Скипу Джилбреху (Skip Gilbrech) и Дэвиду Мак-Кьюну (David McCune), научившим меня программировать, а также Стиву Роджерсу (Steve Rogers) и Стефану Заджибойло (Stephen Zagieboylo), обучившим меня языку C++. Хотелось бы сказать спасибо многим читателям, которые помогли мне отыскать ошибки и описки в первых изданиях книги: Гордону Андерсону (Gordon Anderson), Ричарду Асчери (Richard Ascheri), Рону Барлоу (Ron Barlow), Эйрай Блэчер (Ari Blachor), Чарльзу Кампузано (Charles Campuzano), Тэмми Церконе (Tammy Cercone), Михаэлю Чомишевски (Michael Chomiczewski), Раймонду Чорчу (С. Raymond Church), Чарльзу Дешу (Charles I. Desch), Чарльзу Дингмену (Charles Dingman), Джону Эмбоу (John Embow), Джею Эриксону (Jay Erikson), Марку Фидлеру (Mark Fiedler), Адаму Фордайсу (Adam Fordyce), Роберту Франсису (Robert Francis), Кристоферу Гарьипи (Christopher Gariepy), Грегу Гордону (Greg Gordon), Чарльзу Хейзгеве (Charles Hasegawa), Элиоту Кирсли (Elliot Kearsley), Андре Р. Кинни (Andrew R. Kinnie), Лари Кирби (Lari Kirby), Джо Корти (Joe Korty), Ричарду Ли (Richard Lee), Роджеру Лейнингеру (Roger Leininger), Рубену Лопезу (Ruben Lopez), Рэю Люшу (Ray Lush), Франку Маррено (Frank Marrero), Джоан Мэтью (Joan Mathew), Джеймсу Мэтью (James Mayhew), Шерлиль Мак-Кена (Sheryl McKenna), Джудит Милз (Judith Mills), Терри Милнеру (Terry Milner), Патрику Муру (Patrick Moore), Крису Нили (Chris Neely), Гари Пейджу (Gary Page), Джеймсу Парсонзу (James Parsons), Нирелу Петелу (Neeral Patel), Раулю ван Пруйену (Raoul van Prooijen), Карену Ризеру (Karen Risser), Дэну Роджерсу (Dan Rogers), Ральфу Руссо (Ralph Russo), Грегори Саффорду (Gregory Safford), Джо Скелоуну (Joe Scalone), Роберту Сайксу (Robert Sikes), Сэму Сабо (Sam Suboh), Уолтеру Сану (Walter Sun), Полу Саттону (Paul Sutton), Джеймсу Томпсону (James Thompson), Орландо Ванину (Orlando Vanin), Паскалю Вердье (Pascal Verdieu), Стефану Вейну (Stephen Wain), Джерри Уайерсу (Jerry Wares), Джеку Уайту (Jack White), Скотту Вильсону (Scott Wilson), Нику Витхауз (Nick Witthaus), Микаэлле Зулли (Michelle Zulli) и особенно Дональду Зи (Donald Xie).

Наконец, хочу поблагодарить миссис Калиш (Mrs. Kalish), которая в 1965 году научила своих шестиклассников (в том числе и меня) операциям в двоичной арифметике: в то время ни она, ни я не знали, зачем это может понадобиться.

Введение

Цель этой книги — помочь читателю научиться программировать на языке C++. Всего за 21 день вы узнаете о таких необходимых для этого вещах, как управление вводом-выводом, циклы, массивы, объектно-ориентированное программирование, шаблоны и создание приложений на C++. Все темы поданы в хорошо организованных уроках, которые выстроены в порядке усложнения. Для иллюстрации рассматриваемых тем во все главы включены листинги программ, дополненные результатами работы этих программ и подробным анализом инструкций. Для удобства ссылки на инструкции при анализе программ все их строки пронумерованы.

Чтобы помочь вам быстрее усвоить наши уроки, в конце каждого из них представлена подборка часто задаваемых вопросов и ответы на них, а также тест для самоконтроля и упражнения. В правильности своих ответов на вопросы теста и упражнения вы сможете убедиться, заглянув в приложение Г.

Для кого эта книга


Чтобы, опираясь на материал этой книги, научиться программировать на языке C++, вам вовсе не обязательно иметь предыдущий опыт программирования. Изложение здесь начинается с исходной точки, и, работая с книгой, вы изучите не только сам язык, но и концепции, положенные в основу программирования на C++. Верным и надежным гидом на пути к знаниям будут многочисленные примеры синтаксиса и подробнейший анализ всех приведенных здесь программ. Начинаете ли вы с нуля или у вас уже есть некоторый опыт программирования — в любом случае четкая организация этой книги создаст все условия для быстрого и простого изучения языка C++.

Неделя №1

Основные вопросы

При подготовке к первой неделе изучения основ программирования на языке C++ вам понадобится компилятор, текстовый редактор и эта книга. Если у вас нет ни компилятора C++, Ни текстового редактора, вы можете работать с этой книгой теоретически, но результат не будет таким высоким, как при выполнении всех предлагаемых здесь упражнений на компьютере.

Лучший способ научиться программировать — самому писать программы! В конце каждой главы вы найдете раздел практических занятий, который содержит вопросы для самопроверки и набор упражнений. Не пожалейте времени, чтобы ответить на все вопросы и выполнить все упражнения. Сверьте полученные результаты с правильными ответами, приведенными в приложении Г. Книга организована так, что последующие главы построены с учетом материала, изложенного в предыдущих занятиях, поэтому прежде чем двигаться вперед, убедитесь в том, что вы до конца понимаете уже прочитанный материал.

Несколько слов для программистов на языке C

Материал, изложенный в первых пяти занятиях, вероятно, будет вам знаком. Тем не менее, вам стоит просмотреть содержимое этих занятий и выполнить упражнения, чтобы удостовериться в полном понимании основ, необходимых для усвоения более сложных тем. И только после этого переходите к чтению занятия 6.

Что дальше

В течение первой недели вам предстоит освоить материал, необходимый для первых шагов в программировании вообще и на языке C++ в частности. На первых двух занятиях вы ознакомитесь с базовыми концепциями программирования и с ходом выполнения программ. На занятии 3 вы получите представление о переменных и константах, а также о том, как использовать данные в программах. На занятии 4 рассматриваются возможные ветвления программ на основе используемых данных и условий, проверяемых во время работы программы. На занятии 5 вы узнаете о том, что представляют собой функции и как их использовать, а занятие 6 познакомит вас с классами и объектами. На занятии 7 вы получите более подробную информацию о ходе выполнения программ, а к концу первой недели сможете писать настоящие объектно-ориентированные программы.

День 1-й. Первые шаги

Введение

Добро пожаловать на страницы книги Освой самостоятельно C++ за 21 день! Предлагаю незамедлительно отправиться в путь, если вы хотите стать профессиональным программистом на языке C++. Сегодня вы узнаете:

• Почему C++ стал стандартом в области разработки программных продуктов.

• Каковы этапы разработки программы на языке C++.

• Как написать, скомпилировать и скомпоновать свою первую программу на языке.

Краткий экскурс в историю языка C++

Эволюция языков программирования с момента появления первых электронных компьютеров, построенных для выполнения расчетов траектории движения артиллерийских снарядов во время второй мировой войны, была довольно драматической. Раньше программисты работали с самыми примитивными компьютерными командами, представлявшими собой часть машинного языка. Эти команды состояли из длинных строк единиц и нулей. Вскоре были изобретены ассемблеры, которые могли отображать машинные команды в мнемоническом представлении, более понятном для человека (например, команды ADD или MOV).

Со временем появились такие языки высокого уровня, как BASIC и COBOL. Благодаря этим языкам появилась возможность программировать, используя логические конструкции из слов и предложений, например Let I = 100. Эти команды переводились в машинный язык интерпретаторами и компиляторами. Интерпретатор по мере чтения программы последовательно превращает ее команды (или код) в команды машинного языка. Компилятор же целиком переводит программный код (листинг программы) в некоторую промежуточную форму — объектный файл. Этот этап называется компиляцией. Затем компилятор вызывает программу компоновки, которая превращает объектный файл в исполняемый файл программы.

С интерпретатором работать проще, так как команды программы выполняются в той последовательности, в которой они записаны, что облегчает контроль за выполнением программы. Компилятор же вносит дополнительные этапы компиляции и компоновки программы, в результате чего получается исполняемый файл, недоступный для анализа и редактирования. Однако скомпилированные программы выполняются быстрее, так как перевод команд программы на машинный язык уже произошел на этапе компиляции.

Еще одно преимущество компилируемых языков программирования, таких как C++, состоит в том, что полученные программы могут выполняться на компьютерах без компилятора. При работе же с интерпретируемыми языками для выполнения готовой программы нужно обязательно иметь соответствующую программу-интерпретатор.

В некоторых языках (например, Visual Basic) роль интерпретатора выполняет динамическая библиотека. Интерпретатором языка Java является виртуальная машина (Virtual Machine, или VM). В качестве виртуальной машины обычно используется браузер (такой как Internet Explorer или Netscape).

В течение многих лет основным достоинством программы считалась ее краткость и быстрота выполнения. Программу стремились сделать как можно меньше, поскольку память стоила весьма недешево, да и заинтересованность в высокой скорости выполнения объяснялась высокой стоимостью процессорного времени. Но по мере того как компьютеры становились все портативнее, дешевле (особенно ощутимо дешевела память) и быстрее, приоритеты менялись. Сегодня стоимость рабочего времени программиста намного превышает стоимость большинства компьютеров, используемых в бизнесе. Сейчас большим спросом пользуются профессионально написанные и легко эксплуатируемые программы. Простота эксплуатации означает, что при изменении требований, связанных с решением конкретных задач, программа легко перенастраивается без больших дополнительных затрат.

Программы

Слово программа используется в двух значениях: для обозначения отдельных блоков команд (или исходного кода), написанных программистом, и для обозначения исполняемого программного продукта как единого целого. Это различие в понятиях может ввести читателя в заблуждение, поэтому постараемся явно определять, что имеется в виду: исходный код или исполняемый продукт.

Итак, программу можно определить либо как набор написанных программистом команд, либо как выполняемый на компьютере продукт.

Исходный текст программы можно превратить в выполняемую программу двумя способами. В одном случае интерпретаторы переводят исходный код в машинные команды, и компьютер сразу же их выполняет. В качестве альтернативного варианта компиляторы переводят исходный код в исполняемый файл программы, который затем можно использовать самостоятельно. Хотя с интерпретаторами работать легче, большинство серьезных программ создается с использованием компиляторов, поскольку скомпилированный код выполняется намного быстрее. Примером компилируемого языка программирования служит C++.

Решение многих проблем

С течением времени проблемы, ставящиеся перед программистами, меняются. Двадцать лет назад программы создавались в основном для обработки больших объемов данных. При этом зачастую как те, кто писал программы, так и те, кто их использовал, были профессионалами в компьютерной области знаний. Сегодня многое изменилось. С компьютером нередко работают те, кто даже понятия не имеет о его аппаратном и программном обеспечении. Компьютеры стали инструментом, который используется людьми, больше заинтересованными в решении своих деловых проблем, чем в глубоком освоении компьютера.

По иронии судьбы, чтобы облегчить новому поколению пользователей работу с программами, сложность самих этих программ значительно повысилась. Канули в лету те дни, когда пользователи вводили "таинственные знаки" (т.е. команды) в ответ на понятные только посвященным подсказки-приглашения, в результате получая поток "сырых", т.е. совершенно необработанных данных. В современных программах используются высокоорганизованные, дружественные по отношению к пользователю интерфейсы, оснащенные многочисленными окнами, меню, диалоговыми окнами и мириадами визуальных графических средств, с которыми все уже хорошо знакомы. Программы, написанные для поддержки этого нового уровня взаимодействия человека с компьютером, гораздо сложнее написанных всего лишь десять лет назад.

С развитием всемирной информационной сети Web для компьютеров началась новая эра проникновения на рынок. Пользователей компьютеров сейчас больше, чем когда бы то ни было, и при этом их претензии чрезвычайно высоки. Даже по прошествии всего нескольких лет с момента выхода первого издания этой книги программы заметно увеличились и усложнились, а необходимость использования методов объектно-ориентированного программирования для решения проблем, ставящихся перед современными программистами, стала просто очевидной.

С изменением требований к программированию, претерпели изменение как языки, так и технология написания программ. Хотя в истории эволюции программирования есть много интересного, в этой книге мы остановимся на переходе от процедурного программирования к объектно-ориентированному.

Процедурное, структурированное и объектно-ориентированное программирование

До недавних пор программы рассматривались как последовательности процедур, выполнявших некоторые действия над данными. Процедура, или функция, представляет собой набор определенных команд, выполняемых друг за другом. Данные были отделены от процедур, и главным в программировании было проследить, какая функция, какую вызывает и какие данные при этом меняются. Чтобы внести ясность в эту потенциально запутанную ситуацию, были разработаны принципы структурированного программирования.

Основная идея структурированного программирования вполне соответствует принципу "разделяй и властвуй". Компьютерную программу можно представить состоящей из набора задач. Любая задача, которая слишком сложна для простого описания, должна быть разделена на несколько более мелких составных задач, и это деление необходимо продолжать до тех пор, пока задачи не станут достаточно простыми для понимания.

В качестве примера возьмем вычисление средней заработной платы всех служащих компании. Это не такая уж простая задача. Однако ее можно разбить на ряд подзадач.

1. Выясняем, сколько зарабатывает каждый служащий.

2. Подсчитываем количество людей в компании.

3. Суммируем все зарплаты.

4. Делим суммарную зарплату на количество служащих в компании.

Суммирование зарплат тоже можно разделить на несколько этапов.

1. Читаем запись каждого служащего.

2. Получаем доступ к информации о зарплате.

3. Прибавляем очередное значение зарплаты к накопительной сумме.

4. Читаем запись следующего служащего.

В свою очередь, операцию чтения записи каждого служащего можно разбить на еще более мелкие подоперации.

1. Открываем файл служащих.

2. Переходим к нужной записи.

3. Считываем данные с диска.

Структурированное программирование остается довольно успешным способом решения сложных проблем. Однако к концу 1980-х годов слишком очевидными стали некоторые недостатки структурированного программирования.

Во-первых, не было реализовано естественное желание думать о данных (например, записях служащих) и действиях над ними (сортировке, редактировании и т.п.) как о едином целом. Процедурное программирование, наоборот, отделяло структуры данных от функций, которые манипулировали этими данными.

Во-вторых, программисты обнаружили, что они постоянно переизобретают новые решения старых проблем. Такая ситуация часто называется изобретением колеса (или велосипеда). Желание иметь возможность многократного использования рутинных блоков, повторяющихся во многих программах, вполне естественно. Это чем-то напоминает сборку приемника из радиодеталей. Конструктору не нужно каждый раз изобретать диоды и транзисторы. Он просто использует стандартные, заранее подготовленные радиодетали. Но для разработчиков программных продуктов такой возможности долгое время не было.

Внедрение в практику дружеского пользовательского интерфейса с рамочными окнами, меню и экранными кнопками определило новый подход к программированию. Программы стали выполняться не последовательно от начала до конца, а отдельными блоками в ответ на выполнение некоторого события. При возникновении определенного события (например, щелчка на кнопке или выбора из меню команды) программа должна отреагировать на него соответствующим образом. При таком подходе программы становятся все более интерактивными, что необходимо учитывать при их разработке.

Новый термин: Работая с программами прошлого поколения, пользователь вынужден был проходить через последовательность экранов, чтобы добраться до нужного. В современных программах сразу предоставляется возможность выбора из всех предусмотренных разработчиком вариантов и обеспечивается соответствующая реакция на выбор пользователя.

Объектно-ориентированное программирование стремится отвечать этим требованиям, предоставляя технологию управления элементами любой сложности, создавая условия для многократного использования программных компонентов и объединяя данные с методами манипуляции ими.

Суть объектно-ориентированного программирования состоит в том, чтобы обращаться с данными и процедурами, которые выполняют действия над этими данными, как с единым объектом, т.е. самодостаточным элементом, который в чем-то идентичен другим таким же объектам, но в то же время отличается от них определенными уникальными свойствами.

Язык C++ и объектно-ориентированное программирование

В языке C++ полностью поддерживаются принципы объектно-ориентированного программирования, включая три кита, на которых оно стоит: инкапсуляцию, наследование и полиморфизм.

Инкапсуляция

Когда инженер использует в своей разработке резистор, он не изобретает его заново, а идет на склад (в магазин, к коллеге — возможны варианты) и в соответствии с заданными параметрами подбирает себе нужную деталь. При этом его не очень-то волнует, как устроен данный конкретный резистор, лишь бы он работал в соответствии с заводскими характеристиками.

Именно это свойство скрытости или автономности объектов, используемых во внешних конструкциях, называется инкапсуляцией. С помощью инкапсуляции можно обеспечить сокрытие данных. Это очень важная характеристика, благодаря которой пользователь может не задумываться о внутренней работе используемого объекта. Подобно тому, как использование холодильника не требует знаний о принципах работы рефрижератора, применение хорошо разработанного программного объекта позволяет не заботиться о взаимоотношениях его внутренних переменных-членов.

Еще раз приведем аналогию: для эффективного использования резистора инженеру совсем не обязательно знать принципы его работы и внутреннее устройство. Все свойства резистора инкапсулированы (т.е. скрыты) в самом резисторе, важно только, чтобы он правильно справлялся со своими функциями.

В языке C++ свойство инкапсуляции поддерживается посредством создания нестандартных (пользовательских) типов данных, называемых классами. О том, как создаются классы, вы узнаете на занятии 6. После создания хорошо определенный класс действует как полностью инкапсулированный объект, т.е. его можно использовать в качестве целого программного модуля. Настоящая же внутренняя работа класса должна быть скрыта. Пользователям хорошо определенного класса не нужно знать, как этот класс работает; им нужно знать только одно — как его использовать.

Наследование и многократное использование

Когда инженеры из компании Acme Motors решили сконструировать новый автомобиль, у них было два варианта: они могли начать с нуля или модифицировать существующую модель Star. Возможно, эта модель почти идеальна, но хотелось бы добавить турбокомпрессор и шестискоростную передачу. Главный инженер выбрал второй вариант, т.е. не начинать с нуля, а построить другую модель автомобиля Star, усовершенствовав ее за счет дополнительных возможностей. При этом он предложил назвать новую модель Quasar, Quasar — это разновидность модели Star, но оснащенная новыми деталями.

Язык C++ поддерживает наследование. Это значит, что можно объявить новый тип данных (класс), который является расширением существующего. Об этом новом подклассе говорят, что он унаследован от существующего класса, и называют его производным. Модель Quasar произведена от модели Star, и поэтому она наследует все ее качества, но при необходимости может их расширить. О наследовании и его применении в языке C++ речь пойдет на занятиях 11 и 15.

Полиморфизм

Новая модель Quasar, в отличие от Star, может по-другому реагировать на нажатие акселератора. В модели Quasar можно добавить  инжекторную систему впрыскивания топлива в двигатель и турбокомпрессор вместо использования карбюратора в модели Star. Однако пользователю не обязательно знать об этих отличиях. Он может просто надавить на газ и ожидать соответствующей реакции автомобиля, за рулем которого он сидит.

Язык C++ поддерживает возможность вносить изменения в выполнение одноименных функций для разных объектов благодаря так называемому полиморфизму функций и классов. Поли означает много, морфе — форма, следовательно, полиморфизм означает многообразие форм. Подробно это понятие рассматривается на занятиях 10 и 13.

Эволюция языка C++

Когда назрела идея объектно-ориентированного анализа, проектирования и программирования, Бьярн Страуструп (Bjarne Stroustrup) взял язык С (наиболее популярный для разработки коммерческих программных продуктов) и расширил его, обогатив средствами, необходимыми для объектно-ориентированного программирования.

Хотя язык C++ справедливо называют продолжением С и любая работоспособная программа на языке С будет поддерживаться компилятором C++, при переходе от С к C++ был сделан весьма существенный скачок. Язык C++ выигрывал от своего родства с языком С в течение многих лет, поскольку программисты могли легко перейти от С к использованию C++. Однако многие программисты обнаружили, что для того, чтобы в полной мере воспользоваться преимуществами языка C++, им нужно отказаться от некоторых своих прежних знаний и приобрести новые, а именно: изучить новый способ концептуализации и решения проблем программирования.

Нужно ли сначала изучить язык C

У многих возникает вопрос: "Поскольку C++ является продолжением языка С, нужно ли сначала осваивать С?" Страуструп и большинство других программистов, использующих C++, считают, что это не только не нужно, но гораздо лучше этого вовсе не делать.

Эта книга не предполагает наличия у читателя предварительного опыта программирования. Но если вы знакомы с программированием на С, первые пять глав вам достаточно лишь просмотреть. Только начиная с занятия 6, мы приступим к настоящей разработке объектно-ориентированных программ.

C++ и Java

C++ в настоящее время считается господствующим языком, используемым для разработки коммерческих программных продуктов. В последние годы это господство слегка заколебалось благодаря аналогичным претензиям со стороны такого языка программирования, как Java, но маятник общественного мнения качнулся в другую сторону, и многие программисты, которые бросили C++ ради Java, в последнее время поспешили вернуться к своей прежней привязанности. В любом случае эти два языка так похожи, что изучив один из них, вы на 90% освоите другой.

Стандарт ANSI

Аккредитованный комитет стандартов (Accredited Standards Committee), действующий под руководством Американского национального института стандартов (American National Standards Institute — ANSI), создал международный стандарт для языка C++.

Стандарт C++ также именуется в настоящее время как ISO — International Standards Organization (Международная организация по стандартизации). Кроме того, когда говорят о стандарте языка C++, иногда имеют в виду или NCITS (National Committee for Information Technology Standards — Национальный комитет по стандартам на информационные технологии), или X3 (старое название комитета NCITS), или ANSI/ISO. В этой книге мы будем придерживаться стандарта ANSI, поскольку это наиболее популярный термин.


Примечание: Аббревиатура ANSI обычно произносится как "анси".


Стандарт ANSI — это попытка гарантировать, что язык C++ будет аппаратно независимым (т.е. переносимым с компьютера на компьютер). Это значит, что программа, написанная в соответствии со стандартом ANSI для компилятора компании Microsoft, будет компилироваться без ошибок с использованием компилятора другого производителя. Более того, поскольку приведенные в этой книге программы являются ANSI- совместимыми, они должны компилироваться без ошибок на компьютерах, работающих на платформах Mac, Windows или Alpha.

Для большинства изучающих язык C++ стандарт ANSI остается прозрачным. Тем не менее соответствие программного продукта общепринятым стандартам ANSI важно для профессиональных программистов. Мы позаботились о том, чтобы все программы, вошедшие в эту книгу, были ANSI-совместимыми.

Подготовка к программированию

Язык C++, возможно, больше любого другого требует от программиста до написания программы провести подготовительный этап, заключающийся в ее проектировании. При решении тривиальных проблем, рассматриваемых в первых нескольких главах этой книги, можно обойтись и без затрат на проектирование. Однако сложные проблемы, с которыми профессиональные программисты сталкиваются в реальной жизни чуть ли не каждый день, действительно требуют предварительного проектирования, и чем тщательнее оно будет проведено, тем более вероятно, что программа сможет их решить, причем с минимальными затратами времени и денежных средств. При добросовестно проведенном проектировании создается программа, которую легко отладить и изменять в будущем. Было подсчитано, что около 90% стоимости программного продукта составляет стоимость отладки и настройки. Удачно выполненное проектирование может значительно уменьшить эти расходы, а значит, и стоимость проекта в целом.

Первый вопрос, который нужно задать при подготовке к проектированию любой программы, звучит примерно так: "Какую проблему я хочу решить?" Каждая программа должна иметь четкую, ясно сформулированную цель, и вы увидите, что это относится даже к простейшим программам, приведенным в этой книге.

Второй вопрос каждый уважающий себя программист поставит следующим образом: "Можно ли решить эту проблему с использованием уже имеющихся программных продуктов, т.е. не изобретая собственного колеса?" Может быть, для решения этой проблемы достаточно воспользоваться своей старой программой, ручкой и бумагой или купить у кого-то уже готовую программу? Часто такое решение может оказаться лучше, чем создание абсолютно новой программы. Программист, предлагающий такую альтернативу, никогда не пострадает от отсутствия работы: умение находить экономные решения проблем обеспечит ему популярность в будущем.

Уяснив проблему и придя к выводу, что она требует написания абсолютно новой программы, вы будете готовы к этапу проектирования.

Создание любого коммерческого приложения требует тщательного анализа проблемы и проектирования ее эффективного решения. Хотя эти этапы логически предваряют этап написания программы, все же лучше начать с изучения базового синтаксиса и семантики языка C++ еще до изучения методов формального анализа и проектирования.

Среда разработки

В этой книге предполагается, что в вашем компиляторе предусмотрен режим работы с командной для непосредственного ввода данных, минуя графический интерфейс таких систем, как Windows или Macintosh. Найдите опцию console или easy window либо обратитесь к документации, прилагаемой к компилятору.

Возможно, ваш компилятор имеет собственный встроенный текстовый редактор либо вы можете использовать любой коммерческий текстовый редактор, сохраняющий файлы в текстовом формате без атрибутов форматирования. Примерами таких редакторов могут служить Windows Notepad, команда DOS Edit, Brief, Epsilon, EMACS и vi. Такие коммерческие текстовые процессоры, как WordPerfect, Word и многие другие, также позволяют сохранять файлы в текстовом формате.

Файлы, создаваемые с помощью текстовых редакторов, называются файлами источников. Они обычно имеют расширение .cpp, .cp или .с. В этой книге файлы, содержащие листинги программ, имеют расширение . cpp, но всегда лучше просмотреть документацию компилятора, с которым вы собираетесь работать, и выяснить его предпочтения.


Примечание: Для большинства компиляторов C++ неважно, какое расширение имеет файл, содержащий исходный текст программы, хотя многие из них по умолчанию используют расширение .cpp. Однако будьте вни­мательны: некоторые компиляторы рассматривают файлы с расши­рением . с как программы на языке С, а файлы с расширением . cpp как программы на языке C++. Так что работу с компилятором всегда лучше начать с чтения документации.

Компиляция исходного кода программы

Хотя исходный текст программы, содержащийся в вашем файле, не будет понятен каждому, кто в него заглянет (особенно тем, кто незнаком с языком C++), все же он представлен в таком виде, который может быть воспринят человеком. Файл с исходным текстом программы — это еще не программа, и его нельзя выполнить или запустить.


Рекомендуется: Используйте для написания исходного текста программы простой текстовый редактор или редактор, встроенный в компилятор.

Сохраняйте свои файлы с расширением .сpp, .cp или .c.

Обращайтесь к документации компиля­тора и компоновщика, чтобы быть уве­ренным в правильном компилировании и компоновке программы.


Не рекомендуется: Не используйте текстовый процессор, который сохраняет форматированный текст. Если вам все-таки приходится обращаться к нему, сохраняйте файлы как текст ASCII.


Чтобы превратить исходный текст в программу, используется компилятор. Каким образом вызвать компилятор и как сообщить ему о местонахождении исходного текста программы, зависит от конкретного компилятора, поэтому вновь нужно заглянуть в документацию.

После завершения компиляции исходного кода создается объектный файл. Этот файл обычно имеет расширение ,obj. Но это еще не выполняемая программа. Для превращения объектного файла в исполняемый нужно запустить программу компоновки.

Создание исполняемого файла с помощью компоновщика

Программы на языке C++ обычно создаются путем компоновки одного или нескольких объектных файлов (файлов .obj) с одной или несколькими библиотеками. Библиотекой называется коллекция компонуемых файлов, которые либо поставляются вместе с компилятором, либо приобретаются отдельно, либо создаются и компилируются самим программистом. Все компиляторы C++ поставляются с библиотекой функций (или процедур) и классов, которые можно включить в программу. Функция — это программный блок, который выполняет некоторые служебные действия, например складывает два числа или выводит информацию на экран. Класс можно рассматривать как коллекцию данных и связанных с ними функций. О функциях и классах речь впереди (см. занятия 5 и 6).

Итак, чтобы создать исполняемый файл, нужно выполнить перечисленные ниже действия.

1. Создать файл с исходным текстом программы, который будет иметь расширение cpp.

2. Скомпилировать исходный код и получить объектный файл с расширением .obj.

3. Скомпоновать файл .obj с необходимыми библиотеками с целью создания исполняемого файла программы.

Цикл разработки

Если бы каждая программа заработала должным образом с первой попытки, можно было бы говорить о завершении цикла разработки: написание программы, компиляция исходного кода, компоновка программы и ее выполнение. К сожалению, почти все программы (тривиальные и не очень) содержат ошибки. Одни ошибки обнаружит компилятор, другие — компоновщик, а третьи проявятся только при запуске программы в работу.

Любая ошибка должна быть исправлена, и для этого нужно отредактировать исходный текст программы, перекомпилировать его и перекомпоновать, а затем снова выполнить. Этот цикл разработки представлен на рис. 1.1.

Первая программа на языке C++ — HELLO.cpp

Традиционно в книгах по программированию первые примеры программ начинаются с вывода на зкран слов Hello World или какой-нибудь вариации на тему. В этой книге мы следовали устоявшимся традициям.

Введите первую программу с помошью текстового редактора, в точности повторяя все нюансы, Завершив ввод, сохраните файл, скомпилируйте его, скомпонуйте и выполните. Программа должна вывести на экран слова Hello World. Пока не стоит задумываться о том, как работает эта программа. Вы должны получить удовлетворение просто от того, что прошли полный цикл разработки. Все аспекты этой программы будут подробно рассмотрены на следующих занятиях.


Примечание: В приведенном ниже листинге слева содержатся номера строк. Эти номера установлены лишь для ссылки в тексте книги на соответствующие строки программы. Их не нужно вводить в окно редактора, Например, в первой строке листинга 1.1 вы должны ввести: #include <iostream.h>


Листинг 1.1. Файл HELLO.cpp — программа приветствия.

1: #include <iostream.h>

2:

3: int main()

4: {

5: cout << "Hello World!\n"

6: return 0;

7: }


Убедитесь в том, что введенный вами текст программы совпадает с содержимым приведенного здесь листинга. Обратите внимание на знаки препинания. Символ << в строке 5 является оператором перенаправления потока данных. Эти символы на большинстве клавиатур вводятся путем нажатия клавиши <Shift> и двойного нажатия клавиши с запятой. Строка 5 завершается точкой с запятой (;). Не пропустите этот символ завершения строки программного кода!

Рис. 1.1. Этапы разработки программы на языке C++

Кроме того, убедитесь, что вы корректно работаете со своим компилятором. Большинство компиляторов переходит к компоновке автоматически, но все-таки стоит свериться с документацией. Если вы получите какие-нибудь сообщения об ошибках, просмотрите внимательно текст своей программы и найдите отличия от варианта, приведенного в книге. Если вы увидите сообщение об ошибке со ссылкой на строку 1, уведомляющее о невозможности найти файл iostream.h (cannot find file iostream.h), обратитесь к документации за указаниями об установке пути для включаемых файлов или переменных окружения. Если вы получите сообщение об ошибке, уведомляющее об отсутствии прототипа для функции main, добавьте строку int main(); сразу перед строкой 3. В этом случае вам придется добавлять эту строку до начала функции main в каждой программе, приведенной в этой книге. Большинство компиляторов не требует наличия прототипа для функции main, но вполне возможно, что именно вам достался компилятор из другой компании.

Один из возможных вариантов программы будет выглядеть следующим образом:


1: #include <iostream.h>

2: int main();  // большинство компиляторов не требует этой строки

3: int main()

4: {

5: cout << "Hello World!\n"

6: return 0;

7: }


Попробуйте выполнить программу HELLO.exe. Если все правильно, вы должны увидеть на экране приветствие:


Hello world!


Использование стандартных библиотек

Чтобы гарантировать, что все наши читатели, работающие со старыми компиляторами, не будут иметь проблем с программами из этой книги, мы используем старый стиль включения файлов:

#include <iostream.h>

а не заголовки новых стандартных библиотек:

#include <iostream>

Такой вариант включения должен работать на всех компиляторах, тем не менее, он имеет ряд недостатков. Если вы предпочитаете использовать новые стандартные библиотеки, просто замените в своей программе строку 1 строкой

#include <iostream>

и добавьте строку

using namespace std;

сразу после списка включаемых файлов Нюансы использования пространства имен подробно рассматриваются на занятии 17.

Будете вы использовать стандартные заголовочные файлы или нет, программы, приведенные в этой книге, должны работать без каких бы то ни было модификаций. Принципиальное отличие старых библиотек от новых стандартов заключается в использовании библиотеки iostream (см. занятие 16). Но даже эти изменения не должны оказать влияние на программы из этой книги ввиду их незначительности. Кроме того, они выходят за рамки обсуждения круга тем, предусмотренных для начинающих.


Примечание: Трудно читать текст программы даже про себя, если не знаешь, как произносить специальные символы и ключевые слова. Советую читать первую строку так: "паунд инклуд (# — символ фунта) ай-оу-стрим-дот (или точка) - эйч". А строку 5 читайте как "си-аут-'Hello world!'".


Если увидели, то примите наши поздравления! Вы только что ввели, скомпилировали и запустили свою первую программу на языке C++. Конечно, она не поражает своей грандиозностью, но почти каждый профессиональный программист начинал именно с такой программы.

Осваиваем компилятор Visual C++ 6

Все программы в этой книге проверены на компиляторе Visual C++ 6.0 и должны прекрасно компилироваться, компоноваться и выполняться при использовании любого компилятора Microsoft Visual C++, по крайней мере, начиная с версии 4.0 и выше, Теоретически, поскольку мы имеем дело с ANSI-совместимым текстом программ, все программы в этой книге должны компилироваться любым ANSI-совместимым компилятором любого производителя,

В идеале результаты выполнения программ должны совпадать с приведенными в этой книге, но на практике не всегда так бывает.

Чтобы наконец приступить к делу, ознакомьтесь в этом разделе с тем, как редактировать, компилировать, компоновать и выполнять программу, используя компилятор компании Microsoft. Если у вас другой компилятор, на каких-то этапах возможны некоторые отличия. Даже если вы используете компилятор Microsoft Visual C++ 6.0, все равно стоит свериться с документацией и уточнить все детали.

Построение проекта приветствия

Чтобы создать и протестировать программу приветствия, выполните ряд действий.

1. Запустите компилятор.

2. Выберите из меню File команду New.

3. Выберите опцию Win32 Console Application (Консольное приложение для Win32), введите имя проекта, например Example 1, и щелкните на кнопке ОК.

4. Выберите из меню вариант An Empty Project (Пустой проект) и щелкните на кнопке ОК.

5. Выберите в меню File команду New.

6. Выберите опцию C++ Source File (файл источника C++) и введите имя проекта ex1.

7. Введите текст программы, приведенный выше.

8. Выберите в меню Build команду Build Example1.exe.

9. Убедитесь в отсутствии ошибок компиляции.

10. Нажмите клавиши <Ctrl+F5> для выполнения программы.

11. Нажмите клавишу пробела для завершения программы.

Ошибки компиляции

Ошибки в процессе компиляции могут возникать по различным причинам. Обычно они являются результатом небрежного ввода и другого рода случайностей. Приличные компиляторы сообщат не только о том, что именно у вас не в порядке, они также укажут точное местоположение обнаруженной ошибки. Самые "продвинутые" компиляторы даже предложат вариант исправления ошибки!

В этом можно убедиться, специально сделав ошибку в нашей программе. Давайте удалим в программе HELLO.cpp закрывающую фигурную скобку в строке 7. Ваша программа теперь будет выглядеть так, как показано в листинге 1.2.

Перекомпилируйте программу, и вы увидите сообщение об ошибке, которое выглядит примерно следующим образом:

Hello.cpp, line 5: Compound statement missing terminating; in function main().


1: #include <iostream.h>

2:

3: int main()

4: {

5:  cout << "Hello world!\n";

6:  return 0;


Либо вы можете увидеть такое сообщение об ошибке:

F:\Mcp\Tycpp21d\Testing\List0101.cpp(8) : fatal error C1004: unexpected end of file found

Error executing cl.exe.


В этом сообщении содержится информация о том, где гнездится проблема (указывается имя файла, номер строки и характер проблемы, хотя и в несколько зашифрованном виде). Обратите внимание на то, что в сообщении об ошибке указывается строка 5. Компилятор не уверен в вашем намерении вставить закрывающую фигурную скобку перед или после инструкции, содержащей объект cout. Иногда в сообщениях проблема обрисовывается только в общих чертах. Если бы компилятор мог точно идентифицировать каждую ошибку, то он бы тогда мог сам ее и исправить.

Резюме

Надеюсь, прочитав эту главу, вы получили хорошее представление об эволюции языка C++, а также о том, для решения каких проблем он предназначен. У вас не должно остаться сомнений по поводу того, что изучение C++ — правильный выбор для всякого, кто собирается программировать в ближайшие десять лет. В C++ предусмотрены средства объектно-ориентированного программирования, обеспечивающие эффективность языка системного уровня, благодаря чему C++ заслуженно выбирают в качестве языка разработки.

Сегодня вы научились вводить, компилировать, компоновать и выполнять свою первую программу на C++ и узнали, что представляет собой цикл разработки. Вы также получили небольшое представление об объектно-ориентированном программировании. Нам предстоит еще не раз коснуться этих тем в течение трех недель.

Вопросы и ответы

Что такое текстовый редактор?

Текстовый редактор создает и редактирует файлы, содержащие текст. Для написания текстов программ не требуется никаких атрибутов форматирования или специальных символов. Текстовые файлы с листингами программ не обладают такими свойствами, как автоматический перенос слов либо начертание букв полужирным шрифтом или курсивом и т.д.

Если мой компилятор имеет встроенный редактор, то обязан ли я использовать его?

Почти все компиляторы будут компилировать программы, созданные в любом текстовом редакторе. Однако преимущества использования встроенного текстового редактора состоит в том, что он может быстро переключаться между режимами редактирования и компиляции. Высокоорганизованные компиляторы включают полностью интегрированную среду разработки, позволяя программисту легко получать доступ к справочным файлам, редактировать, компилировать и сразу же исправлять ошибки компиляции и компоновки, не выходя из среды разработки.

Могу ли я игнорировать предупреждающие сообщения, поступающие от компилятора?

Среди программистов распространено мнение, что на предупреждающие сообщения компилятора можно не обращать внимания, но я придерживаюсь другого мнения. Возьмите за правило реагировать на предупреждения компилятора как на сообщения об ошибках. Компилятор C++ генерирует предупреждающие сообщения в тех случаях, когда, по его мнению, вы делаете то, что не входит в ваши намерения. Внимательно отнеситесь к этим предупреждениям и сделайте все, чтобы они исчезли.

Что означает время компиляции?

Это время работы вашего компилятора, в отличие от времени компоновки (когда работает компоновщик) или времени выполнения программы (когда выполняется программа). Эти термины придумали программисты, чтобы кратко обозначить временные периоды, в течение которых обычно и проявляются различные ошибки.

Коллоквиум

В этом разделе предлагаются вопросы для самоконтроля и укрепления полученных знаний и приводится несколько упражнений, которые помогут закрепить ваши практические навыки. Попытайтесь самостоятельно ответить на вопросы теста и выполнить задания, а потом сверьте полученные результаты с ответами в приложении Г. Не приступайте к изучению материала следующей главы, если для вас остались неясными хотя бы некоторые из предложенных ниже вопросов.

Контрольные вопросы

1. В чем разница между интерпретатором и компилятором?

2. Как происходит компиляция исходного кода программы?

3. В чем состоит назначение компоновщика?

4. Какова обычная последовательность действий в цикле разработки?

Упражнения

1. Просмотрите следующую программу и попытайтесь понять, что она делает, не запуская ее на выполнение.


1: #include <iostream.h>

2: int main()

3: {

4: int x = 5;

5: int у = 7;

6: cout << "\n";

7: cout << x + у << " " << x * у;

8: cout << "\n";

9: return 0;

10: }


2. Введите программу из упражнения 1, а затем скомпилируйте и запустите ее. Что она делает? Так ли вы все это предполагали?

3. Введите следующую программу и скомпилируйте ее. Какие сообщения об ошибках вы получили?


1: include <iostream.h>

2: int main()

3: {

4: cout << "Hello World\n";

5: return 0;

6: }


4. Исправьте ошибку в программе из упражнения 3, а затем перекомпилируйте, скомпонуйте и выполните ее. Что делает эта программа?

День 2-й. Составные части программы на языке C++

Программы на языке C++ состоят из объектов, функций, переменных и других элементов. Большая часть этой книги посвящена подробному описанию каждого из них, но, для того чтобы получить представление о слаженной работе всех этих элементов, нужно рассмотреть какую-нибудь законченную рабочую программу. Сегодня вы узнаете:

• Из каких частей состоят программы на языке C++

• Как эти части взаимодействуют друг с другом

• Что такое функция и каково ее назначение

Простая программа на языке C++

Даже простенькая программа HELLO.CPP, приведенная на занятии 1, состоит из нескольких элементов, которые представляют для нас интерес. В этом разделе упомянутая программа рассматривается более подробно. В листинге 2.1 ради удобства обсуждения приведена оригинальная версия файла HELLO.CPP.

Листинг 2.1. Демонстрация частей программы C++ на примере программы HELLO. CPP

1: #include <iostream.h>

2:

3: int main()

4: {

5:    cout << "Hello World!\n";

6:    return 0;

7: }


Результат: Hello World!


АНАЛИЗ: В строке 1 выполняется включение файла iostream.h в текущий файл. Первым в программе стоит символ #, который служит сигналом для препроцессора. При каждом запуске компилятора запускается и препроцессор. Он читает исходный текст программы, находит строки, которые начинаются с символа фунта (#), и работает с этими строками до того, как начнется компиляция программы. Подробнее работа препроцессора рассматривается на занятии 21.

Include — это команда препроцессору, которую можно расшифровать следующим образом: "За именем команды следует имя файла. Нужно найти этот файл и вставить его содержимое прямо в это место программы". Угловые скобки, в которые заключено имя файла, означают, что этот файл нужно искать во всех папках, отведенных для хранения подобных файлов. Если ваш компилятор настроен корректно, то угловые скобки укажут препроцессору на то, что файл iostream.h следует искать в папке, содержащей все файлы с расширением .h, предназначенные для вашего компилятора. Файл iostream.h (input-output-stream — поток ввода-вывода) используется объектом cout, который обслуживает процесс вывода данных на экран. После выполнения строки 1 файл iostream.h будет включен в эту программу, таким образом, как если бы вы собственноручно ввели сюда его содержимое, Препроцессор запускается перед компилятором и выполняет все строки, начинающиеся с символа (#), подготавливая код программы к компиляции.

Основной код программы начинается в строке 3 с вызова функции main(). Каждая программа на языке C++ содержит функцию main(). Функция — это блок программы, который выполняет одно или несколько действий. Обычно функции вызываются другими функциями, но main() — особая функция: она вызывается автоматически при запуске программы.

Функция main(), подобно всем другим функциям, должна объявить тип возвращаемого значения. В программе HELLO.CPP функция main() возвращает значение типа int (от слова integer — целый), а это значит, что по окончании работы эта функция возвратит операционной системе целочисленное значение. В данном случае будет возвращено целое значение 0, как показано в строке 6. Возвращение значения в операционную систему не столь важно, и в общем-то это значение самой системой никак не используется, но стандарт языка C++ требует, чтобы функция main() была объявлена по всем правилам (как показано в этом листинге).


Примечание: Некоторые компиляторы позволяют объявить функцию main() таким образом, чтобы она возвращала значение типа void. Этого больше нельзя делать в C++, поэтому вам следует избавляться от старых привычек. Позвольте функции main() возвращать значения типа int и ради этого поместите в последней строке этой функции выражение return 0;.


Примечание: В некоторых операционных системах предусмотрена возможность проверки значения, возвращаемого программой. Удобно возвращать значение 0 как флаг нормального завершения функции.


Все функции начинаются открывающей фигурной скобкой ({) и оканчиваются закрывающей фигурной скобкой (}). Фигурные скобки функции main() помешены в строках 4 и 7. Все, что находится между открывающей и закрывающей фигурными скобками, считается телом функции.

Вся функциональность нашей простейшей программы заключена в строке 5. Объект cout используется для вывода сообщений на экран. Об объектах пойдет речь на занятии 6, а объект cout и близкий ему объект cin будут подробно рассмотрены на занятии 16. Эти два объекта, cin и cout, используются в языке C++ для организации соответственно ввода данных (например, с клавиатуры) и их вывода (например, на экран).

Вот как используется объект cout: вводим слово cout, за которым ставим оператор перенаправления выходного потока << (далее будем называть его оператором вывода). Все, что следует за этим оператором, будет выводиться на экран. Если вы хотите вывести на экран строку текста, не забудьте заключить ее в двойные кавычки ("), как показано в строке 5.

Строка текста — это набор печатаемых символов.

Два заключительных символа текстовой строки (\n) означают, что после слов Hello world! нужно выполнить переход на новую строку. Этот специальный код подробно объясняется при рассмотрении объекта cout на занятии 17. Функция main() оканчивается в строке 7.

Кратко об объекте cout

На занятии 16 вы узнаете, как использовать объект cout для вывода данных на экран. А пока, не вдаваясь в детали использования объекта cout, скажем, что для вывода значения на экран нужно ввести слово cout, а за ним оператор вывода (<<), который состоит из двух символов "меньше" (<). Несмотря на то что вы вводите два символа, компилятор C++ воспринимает их как один оператор.

Листинг 2.2. Использование обьекта cout

1: // Листинг 2.2. Использование объекта cout

2: #include <iostream.h>

3: int main()

4: {

5:    cout << "Hello there.\n";

6:    cout << "Here is 5: " << 5 << "\n";

7:    cout << "The manipulator endl writes а new line to the screen.";

8:    cout <<

9:           endl;

10:   cout << "Here is a very big number:\t" << 70000 << endl;

11:   cout << "Here is the sum of 8 and 5:\t" << 8+5 << endl;

12:   cout <<'"Here's a fraction:\t\t" << (float) 5/8 << endl;

13:   cout << "And a very very big number:\t";

14:   cout << (double) 7000 * 7000 <<

15:          endl;

16:   cout << "Don't forget to replace Jesse Liberty with your name...\n";

17:   cout << "Jesse Liberty is a C++ programmer!\n";

18:   return 0;

19: }


За символом вывода укажите выводимые данные. Использование объекта cout показано в листинге 2.2. Введите текст этой программы в точности так, как написано, за исключением одного: вместо имени Jesse Liberty подставьте свои имя и фамилию, лучше латинскими буквами.


Результат:

Hello there.

Here is 5: 5

The manipulator endl writes а new line to the screen.

Here is a very big number: 70000

Here is the sum of 8 and 5: 13

Here's a fraction: 0.625

And a very very big number: 4.9e+07

Don't forget to replace Jesse Liberty with your name...

Jesse Liberty is a C++ programmer!


Примечание:Некоторые компиляторы требуют, чтобы математические операции в случае использования после объекта cout заключались в круглые скобки. В этом случае строку 11 пришлось бы изменить следующим образом:

11: cout << "Here is the sum of 8 and 5:\t" << (8+5) << endl;


В строке 2 по команде #include <iostream.h> препроцессор вставляет со­держимое файла iostream.h в исходный текст программы. Включать файл iostream.h необходимо, если в программе используется объект cout и связанные с ним функции-члены.

В строке 5 демонстрируется простейший вариант использования объекта cout: вывод строки символов. Символ \n — это специальный символ форматирования, который указывает объекту cout на необходимость вывода на экран символа новой строки (он произносится "слэш-эн" или просто разрыв строки).

В строке 6 объекту cout передаются три значения, и каждое из них отделяется оператором вывода. Первое значение представляет собой строку "Here is 5: ". Обратите внимание на наличие пробела после двоеточия: пробел является частью текстовой строки. Затем объекту cout с помощью оператора вывода передается значение 5, а за ним — символ разрыва строки (этот символ всегда должен быть заключен в двойные или в одинарные кавычки). При выполнении этого выражения на экране появится строка

Here is 5: 5

Поскольку после первого значения нет символа разрыва строки, следующее значение выводится сразу за предыдущим. Этот процесс называется конкатенацией двух значений.

В строке 7 на экран выводится информационное сообщение, после чего используется оператор endl. Этот оператор также выводит на экран символ разрыва строки. (Другое назначение оператора endl рассматриваются на занятии 16.)


Примечание:Оператор endl расшифровывается как end line (конец строки) и читается как "энд-эл", а не "энд-один" (иногда букву l принимают за единицу).


В строке 10 используется еще один символ форматирования — \t, который вставляет символ табуляции, используемый обычно для выравнивания выводимой информации (строки 10-13). Строка 10 демонстрирует возможность вывода значений типа long int. В строке 11 показано, что объект cout может выводить результат математической операции. Объекту cout передается не значение, а целое математическое выражение 8+5, но на экран выводится число 13.

В строке 12 объект cout выводит результат другой математической операции — 5/8. Идентификатор (float) указывает объекту cout, что результат должен выводиться как дробное число. В строке 14 объекту cout передается выражение 7000 * 7000, а идентификатор (double) устанавливает вывод результата в экспоненциальном представлении. Использование идентификаторов double и float для установки типов значений рассматривается на занятии 3.

В строке 16 нужно вставить свое имя. Если при выполнении программы вы увидите свое имя на экране, шансы стать профессиональным программистом у вас существенно возрастут, хотя в этом и так нет никаких сомнений. Даже компьютер это знает!

Комментарии

Когда вы пишете программу, вам всегда ясно, что вы стараетесь сделать. Однако если через месяц вам придется вернуться к этой программе, то, как это ни удивительно, окажется, что вы почти совсем не помните, о чем идет речь, а о деталях и говорить не приходится.

Чтобы не казнить себя за пробелы в памяти и помочь другим понять вашу программу, используйте комментарии. Комментарии представляют собой текст, который игнорируется компилятором, но позволяет описать прямо в программе назначение отдельной строки или целого блока.

Виды комментариев

В языке C++ используется два вида комментариев: с двойным слешем (//) и сочетанием слеша и звездочки (/*). Комментарий с двойным слешем (его называют комментарием в стиле C++) велит компилятору игнорировать все, что следует за этими символами вплоть до конца текущей строки.

Комментарий со слешем и звездочкой (его называют комментарием в стиле С) велит компилятору игнорировать все, что следует за символами (/*) до того момента, пока не встретится символ завершения комментария: звездочка и слеш (*/). Каждой открывающей паре символов /* должна соответствовать закрывающая пара символов */.

Нетрудно догадаться, что комментарии в стиле С используются также и в языке С, но следует предупредить, что двойной слеш в языке С не воспринимается как символ комментария.

При программировании на C++ для выделения комментариев в основном используются символы двойного слеша, а комментарии в стиле С используются только для временного отключения больших блоков программы. Впрочем, двойной слеш часто используется и для временного отключения отдельных строк программного кода.

Использование комментариев

Раньше считалось хорошим тоном предварять блоки функций и саму программу комментариями, из которых должно было быть понятно, что делает эта функция и какое значение она возвращает.

Исходя из собственного опыта, могу сказать, что такие комментарии не всегда целесообразны. Комментарии в заголовке программы очень быстро устаревают, поскольку практически никто их не обновляет при обновлении текста программы. Функции должны иметь такие имена, чтобы у вас не оставалось ни тени сомнения в том, что они делают, в противном случае имя функции нужно изменить. Зачем использовать бессмысленные и труднопроизносимые имена, чтобы потом раскрывать их смысл с помощью комментариев?

Впрочем, одно другому не помеха. Лучше всего использовать понятные имена и дополнительно вносить краткие разъяснения с помощью комментариев.

Листинг 2.3 демонстрирует использование комментариев, доказывая, что они не влияют на выполнение программы и ее результаты.

Листинг 2.3. Демонстрация комментариев на примере программы HELLO.CPP 

1: #include <iostream.h>

2:

3: int main() 4: {

5:    /* это комментарий,

6:     который продолжается до тех пор, пока не

7:     встретится символ конца комментария в виде звездочки и слэша */

8:    cout << "Hello world!\n";

9:    // Этот комментарий оканчивается в конце строки

10:   cout << "That comment ended!\n";

11:

12:   // после двойного слеша может не быть никакого текста,

13:   /* как, впрочем, и между этими символами */

14:   return 0;

15: }

Резултат:

Hello world!

That comment ended!


Комментарии в строках 5—7 полностью игнорируются компилятором, как и комментарии в строках 9, 12 и 13. Комментарий в строке 9 завершается в конце этой строки, но для завершения комментариев, начавшихся в строках 5 и 13, требуется символ окончания комментария (*/).

Напоследок предупреждение: осторожнее с комментариями!

В комментариях, разъясняющих очевидные места, проку немного. Но они могут даже вводить в заблуждение, если при изменения текста программы вы забудете их скорректировать. Однако очевидность — понятие относительное. То, что очевидно для одного человека, может быть непонятно другому. Всегда старайтесь разумно комментировать свои действия и не забывайте обновлять комментарии при обновлении программы.

И последнее, комментарии должны разъяснять, не что это за операторы, а для чего они тут используются.

Функции

Вы уже познакомились с функцией main(), правда, это необычная, единственная в своем роде функция. Чтобы приносить пользу, функция должна быть вызвана во время сеанса работы программы. Функция main() вызывается не программой, а операционной системой.

Программа выполняется по строкам в порядке их расположения в исходном тексте до тех пор, пока не встретится вызов какой-нибудь функции. Затем управление передается строкам этой функции. После выполнения функции управление возвращается той строке программы, которая следует сразу за вызовом функции.

Есть прекрасная аналогия для работы программы с функцией. Например, если во время рисования у вас ломается карандаш, вы прекращаете рисовать и затачиваете его. После этого вы возвращаетесь к тому месту рисунка, где сломался карандаш. Когда программа нуждается в выполнении некоторой сервисной операции, вызывается функция, ответственная за выполнение этой операции, после чего программа продолжает свою работу с того места, где была вызвана функция. Эта идея демонстрируется в листинге 2.4.

Листинг 2.4. Пример вызова функции

1: #include <iostream.h>

3: // Функция Demonstration Function

4: // выводит на экран информативное сообщение

5: void DemonstrationFunction()

6: {

7:    cout << "In DemonstrationFunction\n";

8: }

10: // Функция main выводит сообщение, затем

11: // вызывает функцию DemonstrationFunction и

12: // выводит на экран второе сообщение.

13: int main()

14: {

15:    cout << "In main\n" ;

16:    DemonstrationFunction();

17:    cout << " Back in main\n";

18:    return 0;

19: }


Результат:

In main

In DemonstrationFunction

Back in main


В строках 5—8 определяется функция DemonstrationFunction(). Она выводит на экран сообщение и возвращает управление программе.

Функция main() начинается в строке 13, и в строке 15 выводится на экран сообщение, уведомляющее о том, что сейчас управление программой находится в функции main(). После вывода этого сообщения в строке 16 вызывается функция DemonstrationFunction(). В результате этого вызова выполняются команды, содержащиеся в функции DemonstrationFunction(). В данном случае вся функция состоит из одной команды, содержащейся в строке 7, которая выводит другое сообщение. По завершении выполнения функции DemonstrationFunction() (строка 8) управление программой возвращается туда, откуда эта функция была вызвана. В данном случае выполнение программы продолжается со строки 17, в которой функция main() выводит на экран заключительное сообщение.

Использование функций

Функции возвращают либо некоторое реальное значение, либо значение типа void, т.е. ничего не возвращают. Функцию, которая складывает два целых числа и возвращает значение суммы, следует определить как возвращающую целочисленное значение. Функции, которая только выводит сообщение, возвращать нечего, поэтому для нее задается тип возврата void.

Функции состоят из заголовка и тела. Заголовок содержит установки типа возвращаемого значения, имени и параметров функции. Параметры позволяют передавать в функцию значения. Следовательно, если функция предназначена для сложения двух чисел, то эти числа необходимо передать в функцию как параметры. Вот как будет выглядеть заголовок такой функции:

int Sum(int а, int b)

Параметр — это объявление типа данных значения, передаваемого в функцию. Реальное значение, передаваемое при вызове функции, называется аргументом. Многие программисты используют эти два понятия как синонимы. Другие считают смешение этих терминов признаком непрофессионализма. Возможно, это и так, но в данной книге эти термины взаимозаменяемы.

Тело функции начинается открывающей фигурной скобкой и содержит ряд строк (хотя тело функции может быть даже нулевым), за которыми следует закрывающая фигурная скобка. Назначение функции определяется содержащимися в ней строками программного кода. Функция может возвращать значение в программу с помощью оператора возврата (return). Этот оператор также означает выход из функции. Если не поместить в функцию оператор возврата, то по завершении функции автоматически возвращается значение типа void. Значение, возвращаемое функцией, должно иметь тип, объявленный в заголовке функции.


Примечание:  Более подробно функции рассматриваются на занятии 5; типы значений, возвращаемых функциями, — на занятии 3. Информация, представленная на этом занятии, является хотя и обзорной, но вполне достаточной для усвоения последующего материала, поскольку функции будут использоваться практически во всех программах, представленных в этой книге.


В листинге 2.5 демонстрируется функция, которая принимает два целочисленных параметра и возвращает целочисленное значение. Не беспокойтесь пока насчет синтаксиса или особенностей работы с целыми значениями (например, int x): эта тема подробно раскрывается на занятии 3.

Листинг 2.5. Пример использования простой функции (FUNC.CPP)

1: #include <iostream.h>

2: int Add (int x, int у)

3: {

4:

5:    cout << "In Add(), received " << x << " and " << у << "\n";

6:    return (x+y);

7: }

8:

9:  int main()

10: {

11:    cout << "I'm in main()!\n";

12:    int а, b, с;

13:    cout << "Enter two numbers: ";

14:    cin >> а;

15:    cin >> b;

16:    cout << "\nCalling Add()\n";

17:    c=Add(a,b);

18:    cout << "\nBack in main().\n";

19:    cout << "с was set to " << с;

20:    cout << "\nExiting...\n\n";

21:    return 0;

22: }


Результат:

I'm in main()!

Enter two numbers: 3 5


Calling Add()

In Add(), received 3 and 5


Back in main().

c was set to 8

Exiting...


АНАЛИЗ: Функция Add() определена в строке 2. Она принимает два целочисленных параметра и возвращает целочисленное значение. Сама же программа начинается в строке 9, выводя на экран первое сообщение. Затем пользователю предлагается ввести два числа (строки 13—15). Пользователь вводит числа, разделяя их пробелом, а затем нажимает, клавишу <Enter>. В строке 17 функция main() передает функции Add() в качестве аргументов два числа, введенные пользователем.

Управление программой переходит к функции Add(), которая начинается в строке 2. Параметры а и b выводятся на экран, а затем складываются. Результат функции возвращается в строке 6, и на этом функция завершает свою работу.

Резюме

Сложность изучения такого предмета, как программирование, состоит в следующем: большая часть изучаемого вами материала во многом зависит от того, что вам еще только предстоит изучить. На этом занятии вы познакомились с основными составляющими частями простой программы на языке C++. Кроме того, вы получили представление о цикле разработки и узнали несколько важных терминов.

Вопросы и ответы

Какую роль выполняет директива #include?

Это команда для препроцессора, который автоматически запускается при вызове компилятора. Данная директива служит для введения содержимого файла, имя которого стоит после директивы, в исходный текст программы.

В чем разница между символами комментариев // и /*?

Комментарии, выделенные двойным слешем (//), распространяются до конца строки. Комментарии, начинающиеся слешем со звездочкой (/*), продолжаются до тех пор, пока не встретится символ завершения комментария (*/). Помните, что даже конец функции не завершит действие комментария, начавшегося с пары символов (/*). Если вы забудете установить завершение комментария (*/), то получите сообщение об ошибке во время компиляции.

В чем разница между хорошими и плохими комментариями?

Хороший комментарий сообщит читателю, почему здесь используются именно эти операторы, или объяснит назначение данного блока программы. Плохой комментарий констатирует то, что делается в данной строке программы. Программа в идеале должна писаться так, чтобы имена переменных и функций говорили сами за себя, а логика выражений была проста и понятна без особых комментариев.

Коллоквиум

В этом разделе предлагаются вопросы для самоконтроля и укрепления полученных знаний и приводится несколько упражнений, которые помогут закрепить ваши практические навыки. Попытайтесь самостоятельно ответить на вопросы теста и выполнить задания, а потом сверьте полученные результаты с ответами в приложении Г. Не приступайте к изучению материала следующей главы, если для вас остались неясными хотя бы некоторые из предложенных ниже вопросов.

Контрольные вопросы

1. В чем разница между компилятором и препроцессором?

2. В чем состоит особенность функции main()?

3. Какие два типа комментариев вы знаете и чем они отличаются друг от друга?

4. Могут ли комментарии быть вложенными?

5. Могут ли комментарии занимать несколько строк?

Упражнения

1. Напишите программу, которая выводит на экран сообщение I love C++.

2. Напишите самую маленькую программу, которую можно скомпилировать, скомпоновать и выполнить.

3. Жучки: введите эту программу и скомпилируйте ее. Почему она дает сбой? Как ее можно исправить?


1: #include <iostream.h>

2: int main()

3: {

4:    cout << Is there а bug here?";

5:    return 0;

6: }


4. Исправьте ошибку в упражнении 3, после чего перекомпилируйте ее, скомпонуйте и запустите на выполнение.

День 3-й. Переменные и константы

Программы должны обладать способностью хранить используемые данные. Для представления и манипуляции этими данными используются переменные и константы. Сегодня вы узнаете:

• Как объявлять и определять переменные и константы

• Как присваивать значения переменным и использовать их в программе

• Как выводить значения переменных на экран

Что такое переменная

В языке C++ переменные используются для хранения информации. Переменную можно представить себе как ячейку в памяти компьютера, в которой может храниться некоторое значение, доступное для использования в программе.

Память компьютера можно рассматривать как ряд ячеек. Все ячейки последовательно пронумерованы. Эти номера называют адресами памяти. Переменная занимает одну или несколько ячеек, в которых можно хранить некоторое значение.


Имя переменной (например, MyVariable) можно представить себе как надпись на ячейке памяти, по которой, не зная настоящего адреса памяти, можно ее найти. На рис. 3.1 схематически представлена эта идея. Согласно этому рисунку, переменная MyVariable начинается с ячейки с адресом 103. В зависимости от своего размера, пере­менная MyVariable может занимать одну или несколько ячеек памяти.


Примечание:В ОЗУ обеспечивается произвольный доступ к ячейкам памяти. Запус­каемая программа загружается в ОЗУ с дискового файла. Все пере­менные также хранятся в ОЗУ. Когда программисты говорят о памяти, они обычно имеют в виду ОЗУ.

Резервирование памяти

При определении переменной в языке C++ необходимо предоставить компилятору информацию о ее типе, например int, chart или другого типа. Благодаря этой информации компилятору будет известно, сколько места нужно зарезервировать для нее и какого рода значение будут хранить в этой переменной.

Каждая ячейка имеет размер в один байт. Если для переменной указанного типа требуется четыре байта, то для нее будет выделено четыре ячейки, т.е. именно по типу переменной (например, int) компилятор судит о том, какой объем памяти (сколько ячеек) нужно зарезервировать для этой переменной.

Поскольку для представления значений в компьютерах используются биты и байты и память измеряется тоже в байтах, важно хорошо разбираться в этих понятиях. Более полно эта тема рассматривается в приложении В.

Размер целых

Для переменных одних и тех же типов на компьютерах разных марок может выделяться разный объем памяти, в то же время в пределах одного компьютера две переменные одинакового типа всегда будут иметь постоянный размер.

Переменная типа char (используемая для хранения символов) чаше всего имеет размер в один байт.


Примечание: Не прекращаются споры о произношении имени типа char. Одни про­износят его как "кар", другие — как "чар". Поскольку это сокращение слова character, то первый вариант правильнее, но вы вольны произ­носить его так, как вам удобно.


В большинстве компьютеров для типа short int (короткий целый) обычно отво­дится два байта, для типа long int (длинный целый) — четыре байта, а для типа int (без ключевого слова short или long) может быть отведено два или четыре байта. Раз­мер целого значения определяется системой компьютера (16- или 32-разрядная) и ис­пользуемым компилятором. На современных 32-разрядных компьютерах, использую­щих последние версии компиляторов (например, Visual C++ 4 или более поздние), целые переменные имеют размер в четыре байта. Эта книга ориентирована на ис­пользование 4-байтовых целых, хотя у вас может быть другой вариант. Программа, представленная в листинге 3.1, поможет определить точный размер этих типов на ва­шем компьютере.

Под символом подразумевается одиночная буква, цифра или знак, занимающий только один байт памяти.

Листинг 3.1. Определение размеров переменным разных типов на вашем компьютре

1: #include <iostream.h>

2:

3: int main()

4: {

5:    cout << "The size of an int is:\t\t" << sizeof(int) << " bytes.\n";

6:    cout << " The size of a short int is:\t\t" << sizeof(short) << " bytes.\n";

7;    cout << " The size of a long int is:\t\t" << sizeof(long) << " bytes.\n";

8:    cout << " The size of a char is:\t\t" << sizeof(char) << " bytes.\n";

9:    cout << " The size of a float is:\t\t" << sizeof(float) << " bytes.\n";

10:   cout << " The size of a double is:\t\t" << sizeof(double) << " bytes.\n";

11:   cout << " The size of a bool is:\t\t" << sizeof(bool) << " bytes.\n";

12:

13:   return 0:

14: };


Результат:

The size of an int is: 4 bytes.

The size of a short int is: 2 bytes.

The size of a long int is: 4 bytes.

The size of a char is: 1 bytes.

The size of a float is: 4 bytes.

The size of a double is: 4 bytes.

The size of a bool is: 1 bytes.


Примечание:На вашем компьютере размеры переменных разных типов могут быть другими.


Большинство операторов листинга З.1 вам знакомо. Возможно, новым для вас будет использование функции sizeof() в строках 5-10. Результат выполнения функции sizeof() зависит от компилятора и компьютера, а ее назначение состоит в определении размеров объектов, переданных в качестве параметра. Например, в строке 5 функции sizeof() передается ключевое слово int. Функция возвращает размер в байтах переменной типа int на данном компьютере. В нашем примере для типов int и long int возвращается значение четыре байта.

Знаковые и беззнаковые типы

Целочисленные переменные, используемые в программах, могут быть знаковыми и беззнаковыми. Иногда бывает полезно установить для переменной использование только положительных чисел. Целочисленные типы (short и long) без ключевого слова unsigned считаются знаковыми. Знаковые целые могут быть отрицательными или положительными. Беззнаковые числа всегда положительные.

Поскольку как для знаковых, так и для беззнаковых целых отводится одно и то же число байтов, то максимальное число, которое можно хранить в беззнаковом целом, вдвое превышает максимальное положительное число, которое можно хранить в знаковом целом. С помощью типа unsigned short int можно обрабатывать числа в диапазоне 0—65 535. Половина чисел, представляемых знаковым коротким целым типом, отрицательные, следовательно, с помощью этого типа можно представить числа только в диапазоне - 32 768—32 767. Если в этом вопросе вам что-то неясно, прочитайте приложение В.



Базовые типы переменных

В языке C++ предусмотрены и другие типы переменных. Они делятся на целочисленные (которые рассматривались до сих пор), вещественные (с плавающей точкой) и символьные.

Вещественные переменные содержат значения, которые могут выражаться в виде дробей. Символьные переменные занимают один байт и используются для хранения 256 символов и знаков ASCII, а также расширенных наборов символов ASCII.

Под символами ASCII понимают стандартный набор знаков, используемых в компьютерах. ASCII — это American Standard Code for Information Interchange (Американский стандартный код для обмена информацией). Почти все компьютерные операционные системы поддерживают код ASCII, хотя многие также поддерживают и другие национальные наборы символов.

Базовые типы переменных, используемые в программах C++, представлены в табл. 3.1. В ней также приведены обычные размеры переменных указанных типов и предельные значения, которые могут храниться в этих переменных. Вы можете сверить результаты работы программы, представленной в листинге 3.1, с содержимым табл. 3.1.


Таблица 3.1. Типы переменных.


Примечание:В зависимости от версии компилятора и марки компьютера, размеры переменных могут отличаться от приведенных в табл.3.1. Если результаты, полученные на вашем компьютере, совпадают с теми, что приведены после листинга 3.1, значит, табл. 3.1 применима к вашему компьютеру. В противном случае вам следует обратиться к документации, прилагаемой к компилятору, чтобы получить информацию о значениях, которые могут хранить переменные разных типов в вашей компьютерной системе.

Определение переменной

Чтобы создать или определить переменную, нужно указать ее тип, за которым (после одного или нескольких пробелов) должно следовать ее имя, завершающееся точкой с запятой. Для имени переменной можно использовать практически любую комбинацию букв, но оно не должно содержать пробелов, например: x, J23qrsnf и myAge. Хорошими считаются имена, позволяющие судить о назначении переменных, ведь удачно подобранное имя способно облегчить понимание работы программы в целом. В следующем выражении определяется целочисленная переменная с именем myAge:

int myAge;


Примечание:При объявлении переменной для нее выделяется (резервируется) память. Резервирование памяти не очищает ячейки от значений, которые ранее в них хранились, поэтому если за объявлением переменной не следует ее инициализация, то текущее значение этой переменной будет непредсказуемым, а не нулевым, как думают многие. Далее вы узнаете, как инициализировать переменную (другими словами, присвоить ей новое значение).


Уважающие себя программисты стремятся избегать таких нечитабельных имен переменных, как J23qrsnf, а однобуквенные имена (например, x или i) используют только для временных переменных, таких как счетчики циклов. Старайтесь использовать как можно более информативные имена, например myAge или howMany. Такие имена даже три недели спустя помогут вам вспомнить, что вы имели в виду, когда писали те ил и иные программные строки.

Поставьте следующий эксперимент. Опираясь лишь на первые пять строк программы, попробуйте догадаться, для чего предназначены объявленные ниже переменные.


Пример 1.


Пример 2.


Примечание:Если вы скомпилируете эту программу, компилятор выведет предупреждение о том, что эти переменные не инициализированы. Чуть ниже вы увидите, как решается эта проблема.


Очевидно, что о назначении переменных во втором примере догадаться легче, и неудобство, связанное с необходимостью вводить более длинные имена переменных, впоследствии окупится с лихвой, потому что вам не придется ломать голову, для чего предназначена та или иная переменная.

Чувствительность к регистру букв

Язык C++ чувствителен к регистру букв. Другими словами, прописные и строчные буквы считаются разными буквами. Переменные с именами age, Age и AGE рассматриваются как три различные переменные.


Примечание: Некоторые компиляторы позволяют отключать чувствительность к регистру букв. Лучше этого не делать, ведь ваши программы не смогут работать с другими компиляторами и другие программисты будут введены в заблуждение такой программой.


Существуют различные соглашения по поводу принципов подбора имен переменным. Хотя не так уж важно, каких принципов будете придерживаться вы, желательно оставаться верными им по крайней мере на протяжении работы над одним проектом.

Многие программисты предпочитают записывать имена переменных только строчными буквами. Если для имени требуется два слова (например, my car), то в соответствии с самыми популярными соглашениями используются варианты my_car или myCar. Последняя форма записи называется "верблюжьим представлением", поскольку одна прописная буква посередине слова напоминает горб верблюда.

Одни считают, что имена переменных с символом подчеркивания внутри слова (my_car) читаются легче. Другим не нравится этот подход, потому что он якобы вызывает трудности при вводе. В этой книге отдельные слова в составных именах переменных начинаются с прописной буквы: myCar, theduickBrownFox и т.д. Но это, конечно, ни к чему вас не обязывает, и вы можете использовать другие подходы при выборе имен.


Примечание:Многие профессиональные программисты применяют так называемый венгерский стиль записи переменных. Идея состоит в том, что каждая переменная должна иметь префикс, указывающий на ее тип. Так, имена целочисленных переменных (типа int) должны начинаться со строчной буквы i, длинные целые (типа long int) — со строчной буквы l. Соответствующими префиксами должны быть помечены константы, глобальные переменные, указатели и другие объекты. Однако это имеет более важное значение в программировании на языке С, чем на C++, поскольку последний поддерживает создание нестандартных типов, или типов, определенных пользователем (подробнее об этом см. занятие 6), а также потому, что в языке C++ установлен более строгий контроль за типами данных.


Ключевые слова

Некоторые слова изначально зарезервированы в языке C++ и поэтому их нельзя использовать в качестве имен переменных. Такие слова называются ключевыми и используются компилятором для управления программой. В их число входят if, while, for и main. В технической документации компилятора должен быть полный список всех зарезервированных слов. Типичный набор ключевых слов языка C++ приведен в приложении Б.


Не рекомендуется:Не используйте ключевые слова в качестве имен переменных. Не присваивайте беззнаковым переменным отрицательные числа.


Рекомендуется:Указывайте тип переменной перед именем при ее определении. Используйте для переменных информативные имена. Помните, что в языке C++ различаются прописные и строчные буквы. Уточните, сколько байтов занимает в памяти каждый тип переменной на вашем компьютере и какие значения могут храниться в переменных этого типа.

Создание нескольких переменных одного типа

В языке C++ предусмотрена возможность создания в строке программы сразу нескольких переменных одного типа. Для этого следует указать тип, за которым перечисляются имена переменных, разделенные запятыми. Например:


unsigned int myAge, myWeight; // две переменные типа

unsigned int long int area, width, length; // три переменные типа long int


В данном примере обе переменные, myAge и myWeight, объявлены как беззнаковые целочисленные. Во второй строке объявляются три переменные с именами area, width и length. Всем этим переменным присваивается один и тот же тип (long), поэтому в одной строке определения переменных нельзя смешивать разные типы.

Присваивание значений переменным

С этой целью используется оператор присваивания (=). Так, чтобы присвоить число 5 переменной Width, запишите следующее:

unsigned short Width;

Width = 5;


Примечание:Тип long — зто сокращенное название типа long int, а short — сокращенное название типа short int.


Эти две строки можно объединить в одну и инициализировать переменную Width в процессе определения:


unsigned short Width = 5;


Инициализация напоминает присваивание, особенно в случае инициализации целочисленных переменных. Ниже, при рассмотрении констант, вы узнаете, что некоторые значения обязательно должны быть инициализированы, поскольку по отношению к ним нельзя выполнять операцию присваивания. Существенное отличие инициализации от присваивания состоит в том, что она происходит в момент создания переменной.

Подобно тому, как можно определять сразу несколько переменных, можно и инициализировать сразу несколько переменных при их создании. Например:


// создаем две переменных типа long и инициализируем их

long width = 5, length = 7;


В этом примере переменная width типа long int была инициализирована значением 5, а переменная length того же типа — значением 7. При определении нескольких переменных в одной строке, инициализировать можно только некоторые из них:


int myAge = 39, yourAge, hisAge = 40;


В этом примере создаются три переменных типа int, а инициализируются только первая и третья.

В листинге 3.2 показана программа, полностью готовая к компиляции. В ней вычисляется площадь прямоугольника, после чего результат выводится на экран.

Листинг 3.2. Демонстрация использования переменных

1: // Демонстрация использования переменных

2: #include <iostream.h>

3:

4: int main()

5: {

6:    unsigned short int Width = 5, Length;

7:    Length = 10;

8:

9:    // создаем переменную Area типа unsigned short и инициализируем ее

10:   // результатом умножения значений переменных Width на Length

11:   unsigned short int Area = (Width * Length);

12:

13:   cout << "Width:" << Width << "\n";

14:   cout << "Length: " << Length << endl;

15:   cout << "Area: " << Area << endl;

16:   return 0;

17: }


Результат:

Width: 5

Length: 10

Area: 50


В строке 2 содержится директива препроцессора include, включающаябиблиотеку iostream, которая обеспечивает работоспособность объекта вывода cout. Собственно, программа начинает свою работу в строке 4.

В строке 6 переменная Width определяется для хранения значения типа unsigned short int, и тут же выполняется инициализация этой переменной числом 5. В этой же строке определяется еще одна переменная Length такого же типа, но без инициализации. В строке 7 переменной Length присваивается значение 10.

В строке 11 определяется переменная Area типа unsigned short int, которая тут же инициализируется значением, полученным в результате умножения значений переменных Width и Length. В строках 13—15 значения всех переменных программы выводятся на экран. Обратите внимание на то, что для разрывов строк используется специальный оператор endl.


Ключевое слово typedef

Порой утомительно и скучно многократно повторять запись таких ключевых слов, как unsigned short int. (Кроме того, в этих трех словах немудрено наделать еще и кучу ошибок.) В языке C++ предусмотрена возможность создания псевдонима для этой фразы путем использования ключевого слова typedef, которое означает определение типа.

При создании псевдонима важно отличать его от создания нового типа (об этом пойдет речь на занятии 6). Чтобы создать псевдоним типа данных, сначала записывается ключевое слово typedef, за которым следует существующий тип, а за ним новое имя с символом точки с запятой. Например, при выполнении строки

typedef unsigned short int USHORT;

создается новое имя USHORT, которое можно использовать везде, где нужно определить переменную типа unsigned short int. Листинг 3.3 переделан из листинга 3.2 с использованием псевдонима USHORT вместо слов unsigned short int.

Листинг 3.3. Пример определения типа с помощью typedef 

1: // * * * * * * * * * * * * * * * * *

2: // Пример определения типа с помощью typedef

3: #include <iostream.h>

4:

5: typedef unsigned short int USHORT; //определение псевдонима

6:

7: int main()

8: {

9:    USHORT Width = 5;

10:   USHORT Length;

11:   Length = 10;

12:   USHORT Area = Width * Length;

13:   cout << "Width:" << Width << "\n";

14:   cout << "Length: " << Length << endl;

15:   cout << "Area: " << Area << endl;

16:   return 0;

17: }


Результат:

Width: 5

Length: 10

Area: 50


В строке 5 идентификатор USHORT с помощью ключевого слова typedef определен как псевдоним типа unsigned short int. В остальном эта программа аналогична предыдущей, представленной в листинге 3.2, да и результаты работы обеих программ совпадают.

В каких случаях следует использовать типы short и long

Начинающим программистам часто бывает трудно принять решение о том, когда объявлять переменную с использованием типа long, а когда — с использованием типа short. Правило довольно простое: если существует хоть малейший шанс, что ваше значение будет слишком большим для предполагаемого типа, используйте тип с большим размером.

Приведенные в табл. 3.1 переменные типа unsigned short int, как правило, имеют размер, равный двум байтам, и могут хранить значение, не превышающее 65 535. Знаковые короткие целые делят свой диапазон между положительными и отрицательными числами, поэтому их максимальное значение вдвое меньше, чем у беззнакового короткого целого.

Хотя переменные типа unsigned long int могут хранить очень большое число (4 294 967 295), оно все-таки конечно. Если вам нужно работать с еще большими числами, придется перейти к использованию типов float или double, но при этом вы несколько проиграете в точности. Переменные типа float и double могут хранить чрезвычайно большие числа, но на большинстве компьютеров значимыми остаются только первые 7 или 19 цифр, т.е. после указанного количества цифр число округляется.

Переменные с меньшим размером используют меньший объем памяти. В наши дни память становится все дешевле, а жизнь не так уж длинна, чтобы тратить ее на экономию памяти. Поэтому отдайте предпочтение типу int, который на большинстве компьютеров имеет размер в четыре байта.

Переполнение беззнаковых целых

Что случится, если при использовании беззнаковых длинных целых превысить их предельный максимум?

Когда беззнаковое целое достигает своего максимального значения, при очередном инкременте оно сбрасывается в нуль и отсчет начинается сначала, как в автомобильном одометре. В листинге 3.4 показано, что произойдет при попытке поместить слишком большое число в переменную типа short.

Листинг 3.4. Пример переполнения беззнаковой целой переменной.

1: #include <iostream.h>

2: int main()

3: {

4:    unsigned short int smallNumber;

5:    smallNumber = 65535;

6:    cout << "small number:" << smallNumber << endl;

7:    smallNumber++;

8:    cout << "small number:" << smallNumber << endl;

9:    smallNumber++;

10:   cout << "small number:" << smallNumber << endl;

11:   return 0;

12: }


Результат:

small number:65535

small number:0

small numbar:1


АНАЛИЗ: В строке 4 объявляется переменная smallNumber типа unsigned short int, которая на моем компьютере является двухбайтовой, способной хранить значение между 0 и 65 535. В строке 5 переменной smallNumber присваивается максимальное значение, которое в строке 6 выводится на экран.

В строке 7 переменная smallNumber увеличивается на 1. Приращение осуществляется с помощью оператора инкремента, имеющего вид двух символов плюс (++). Следовательно, значение переменной smallNumber должно стать 65 536. Однако переменная типа unsigned short int не может хранить число, большее 65 535, поэтому ее значение сбрасывается в 0, который и выводится в строке 8.

В строке 9 переменная smallNumber вновь увеличивается на единицу, после чего ее новое значение выводится на экран.

Переполнение знаковых целочисленных значений

Знаковые целые отличаются от беззнаковых тем, что половина этих значений всего диапазона — отрицательные числа. При выходе за пределы максимального положительного значения переменная принимает минимальное отрицательное значение. В листинге 3.5 показано, что происходит, если добавить единицу к максимальному положительному числу, хранящемуся в переменной типа short int.

Листинг 3.5. Пример переполнения знаковой целой переменной

1: #include <iostream.h>

2: int main()

3: {

4:    short int smallNumber;

5:    smallNumber = 32767;

6:    cout << "small number:" << smallNumber << endl;

7:    smallNumber++;

8:    cout << "small number:" << smallNumber << endl;

9:    smallNumber++;

10:   cout << "small number:" << smallNumber << endl;

11:   return 0;

12:}


Анализ: В строке 4 переменная smallNumber объявляется на этот раз короткой целой (short int) со знаком (если в объявлении переменной ключевое слово unsigned отсутствует, т.е. эта переменная явно не объявляется беззнаковой, то подразумевается ее использование со знаком). В остальном эта программа выполняет те же действия, что и предыдущая, но на экран выводятся совсем другие результаты. Чтобы до конца понять, почему получены именно такие результаты, нужно знать, как представляются числа со знаком в двухбайтовом целом значении.

Этот пример показывает, что в случае приращения максимального положительного целого числа со знаком будет получено не нулевое значение (как в случае с беззнаковыми целыми), а минимальное отрицательное число.

Символы

Символьные переменные (типа char) обычно занимают один байт, этого достаточно для хранения 256 значений печатаемых символов (см. приложение В). Значение типа char можно интерпретировать как число в диапазоне 0—255, или символ ASCII. Набор символов ASCII и его эквивалент ISO (International Standards Organization — Международная организация по стандартизации) представляют собой способ кодировки всех букв, цифр и знаков препинания.

Например, в коде ASCII английской строчной букве "а" присвоено значение 97. Всем прописным и строчным буквам, всем цифрам и знакам препинания присвоены значения от 1 до 128. Дополнительные 128 знаков и символов зарезервированы для расширения возможностей компьютера, хотя расширенный набор символов IBM стал уже чем-то вроде стандарта.


Примечание:ASCII обычно произносится как "аскей".


Примечание:Компьютеры не имеют ни малейшего понятия, ни о каких буквах, знаках препинания или предложениях. Все они понимают только числа. В действительности же они оценивают некоторые электрические параметры в определенных точках своих схем. Если значение оцениваемого параметра выше некоторой оговоренной величины, оно представляется внутренне как 1, если нет — как 0. Путем группирования нулей и единиц компьютер способен генерировать кодовые комбинации, которые можно интерпретировать как числа, а те, в свою очередь, можно присвоить буквам и знакам препинания.

Символы и числа

Если поместить какой-нибудь символ, например "а", в переменную типа char, то в действительности она будет хранить число, лежащее в диапазоне между 0 и 255. Однако компилятор знает, как переходить от символов к их цифровым эквивалентам в ASCII и обратно.

Взаимосвязь между числом и буквой произвольна, поскольку нет никакой весомой причины для присваивания строчной букве "а" именно значения 97. Если все составляющие компьютера (ваша клавиатура, компилятор и экран) с этим "согласны", никаких проблем не возникнет. Однако важно понимать, что между значением 5 и символом "5" большая разница. Символу "5" в действительности соответствует значение 53, так же как букве "а" соответствует число 97.

Листинг 3.6. Вывод на зкран символов по их значениям.

1: #include <iostream.h>

2: int main()

3: {

4:    for (int i = 32;   i<128;   i++)

5:    cout <<  (char)  i;

6:    return 0;

7: }


Результат:

!"#$%'()*+,./0123456789:;<>?@ABCDEFGHIJKLMNOP

_QRSTUVWXYZ[\]"`abcdefghijklmnopqrstuvwxyz{|{~


Эта простая программа выводит символы, значения которых лежат в диапазоне 32—127.

Специальные символы

Компилятор C++ распознает некоторые специальные символы, предназначенные для форматирования текста. (Самые распространенные из них представлены в табл. 3.2.) Чтобы вставить эти символы в программу, используется обратный слеш (называемый символом начала управляющей последовательности), указывающий, что следующий за ним символы является управляющими. Следовательно, чтобы вставить в программу символ табуляции, нужно ввести одиночную кавычку, обратный слеш, букву t и снова одиночную кавычку:

char tabCharacter = '\t';

В этом примере объявляется переменная типа char (с именем tabCharacter), которая тут же инициализируется символьным значением \t, распознаваемым как символ табуляции. Специальные символы форматирования используются при выводе информации на экран, в файл или на другое устройство вывода (например, принтер).

Символ начала управляющей последовательности изменяет значение символа, который следует за ним. Например, обычно символ n означает букву я, но когда перед ней стоит символ начала управляющей последовательности (\), то он превращается в символ разрыва строки.


Таблица 3.2. Управляющие символы.

Константы

Подобно переменным, константы представляют собой ячейки памяти, предназначенные для хранения данных. Но, в отличие от переменных, константы не изменяются (о чем говорит само название — константа). Создаваемую константу нужно инициализировать, поскольку позже ей нельзя присвоить новое значение,

В языке C++ предусмотрено два типа констант: литеральные и символьные.

Литеральные константы

Литеральная константа — это значение, непосредственно вводимое в самой программе. Например, в выражении


int myAge = 39;


myAge является переменной типа int, а число 39 — литеральной константой. Нельзя присвоить никакое значение константе 39.

Символьные константы

Символьная константа — это константа, представленная именем (точно так же, как именем представляется любая переменная). Однако, в отличие от переменной, значение инициализированной константы изменить нельзя.

Если в вашей программе есть одна целочисленная переменная с именем students, а другая — с именем classes, вы могли бы вычислить общее количество учеников школы при условии, что вам известно, сколько классов в школе и сколько учеников в каждом классе (допустим, каждый класс состоит из 15 учеников):


students = classes * 15;


Примечание:Символ (*) означает умножение.


В этом примере число 15 является литеральной константой. Но если эту литеральную константу заменить символьной, то вашу программу будет легче читать и изменять в будущем:


students = classes * studentsPerClass


Если впоследствии потребуется изменить количество учеников в каждом классе, вы сможете сделать это единожды в той строке программы, где определяется константа studentsPerClass, и вам не придется вносить изменения во все строки программы, где используется это значение.

В языке C++ существует два способа объявления символьной константы. Традиционный и ныне уже устаревший способ состоит в использовании директивы препроцессора #define.

Определение констант с помощью директивы #deiine

Для определения константы традиционным способом введите следующее выражение:


#define studentsPerClass 15


Обратите внимание на то, что константа studentsPerClass не имеет никакого конкретного типа (int, char и т.д.). Директива #define выполняет простую текстовую подстановку. Каждый раз, когда препроцессор встречает слово studentsPerClass, он заменяет его литералом 15.

Поскольку препроцессор запускается перед компилятором, последний никогда не увидит константу, а будет видеть только число 15.

Определение констант с помощью ключевого слова const

Хотя директива #define и справляется со своими обязанностями, в языке C++ существует новый, более удобный способ определения констант:


const unsigned short int studentsPerClass = 15;


В этом примере также объявляется символическая константа с именем studentsPerClass, но на сей раз для этой константы задается тип unsigned short int. Этот способ имеет несколько преимуществ, облегчая дальнейшую поддержку вашей программы и предотвращая появление некоторых ошибок. Самое важное отличие этой константы от предыдущей (объявленной с помощью директивы #define) состоит в том, что она имеет тип и компилятор может проследить за ее использованием только по назначению (т.е. в соответствии с объявленным типом).


Примечание:Во время работы программы константы изменять нельзя. Если же возникла необходимость в изменении, например, константы studentsPerClass, вам нужно изменить соответствующее объявление в программе и перекомпилировать ее.


Рекомендуется:Следите, чтобы значения переменных не превышали допустимый предел. Присваивайте переменным осмысленные имена, отражающие их назначение. Используйте типы short и long, чтобы более эффективно управлять памятью компьютера.


Не рекомендуется: Не используйте в качестве имен переменных ключевые слова.

Константы перечислений

Перечисления позволяют создавать новые типы данных, а затем определять переменные этих типов, значения которых ограничены набором константных значений. Например, можно объявить C0L0R как перечисление и определить для него пять значений: RED, BLUE, GREEN, WHITE И BLACK.

Для создания перечисления используется ключевое слово enum, за которым следуют: имя типа, открывающая фигурная скобка, список константных значений, разделенных запятыми, закрывающая фигурная скобка и точка с запятой. Например:


enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };


Это выражение выполняет две задачи.

1. Создается перечисление с именем C0L0R, являющееся новым типом.

2. Определяются символьные константы: RED со значением 0; BLUE со значением 1; GREEN со значением 2 и т.д.

Каждой константе перечисления соответствует определенное целочисленное значение. По умолчанию первая константа инициализируется значением 0, а каждая следующая — значением, на единицу большим предыдущего. Однако любую константу можно инициализировать произвольным значением, и в этом случае явно неинициализированные константы продолжат возрастающую последовательность, взяв за точку отсчета значение, стоящее перед ними. Таким образом, если записать


enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };


то константа red будет иметь значение 100; константа blue — 101; константа GREEN — 500; константа WHITE — 501; константа BLACK — 700.

Теперь можно определить переменные типа C0L0R, но каждой из них можно присвоить только одно из перечислимых значений (в данном случае RED, BLUE, GREEN, WHITE или BLACK либо 100, 101, 500, 501 или 700). Переменной C0L0R можно присвоить любое значение цвета. На самом деле этой переменной можно присвоить любое целое значение, даже если оно не соответствует ни одному из разрешенных цветов, но в этом случае приличный компилятор должен возмутиться и показать предупреждающее сообщение. Важно понимать, что переменные перечисления на самом деле имеют тип unsigned int и целочисленным переменным присваиваются заданные константы перечисления. Однако иногда при работе с цветами, днями недели или другими подобными наборами значений неплохо иметь возможность называть эти значения по имени. В листинге 3.7 представлена программа, в которой используется тип перечисления.

Листинг 3.7. Использование перечисления 

1: #include <iostream.h>

2: int main()

3: {

4:    enum Days { Sunday, Monday, Tuesday,

5:    Wednesday, Thursday, Friday, Saturday };

6:    int choice;

7:    cout << "Enter a day (0-6): ";

8:    cin << choice;

9:    if (choice = Sunday || choice == Saturday)

10:   cout << "\nYou're already off on weekends!\n";

11:   else

12:   cout << "\nOkay, I'll put in the vacation day.\n";

13:   return 0;

14: }


Результат:

Enter a day (0-6): 6

You're already off on weekends!


Анализ: В строке 4 определяется перечисление DAYS с семью константными значениями. Все они образуют возрастающую последовательность чисел, начиная с нуля; таким образом, значение вторника (Tuesday) равно 2.

Пользователю предлагается ввести значение между 0 и 6. Он не может ввести слово Sunday, поскольку в программе не предусмотрен перевод символов в значение перечисления. Но можно проверить введенное пользователем значение, сравнив его с константными значениями перечисления, как показано в строке 9. Использование перечисления облегчает анализ программы. Того же эффекта можно добиться, используя константы целочисленного типа, как показано в листинге 3.8.


Примечание:Для этой и всех небольших программ в данной книге я намеренно не предусматривал включения ряда выражений, которые обычно пишутся для обработки ситуаций, связанных с приемом от пользователя неверных данных. Например, в этой программе отсутствует проверка вводимых чисел, которая должна обязательно присутствовать в настоящей программе и предназначена для предупреждения ввода неразрешенных чисел. Это было сделано намеренно, для того чтобы сэкономить место в книге и сосредоточить ваше внимание только на рассматриваемой в данном разделе теме.

Листинг 3.8. Та же программа, но с использованием констант целочисленного типа

1: #include <iostream.h>

2: int main()

3: {

4:    const int Sunday = 0;

5:    const int Monday = 1;

6:    const int Tuesday = 2;

7:    const int Wednesday = 3;

8:    const int Thursday = 4;

9:    const int Friday = 5;

10:   const int Saturday = 6: 11;

12:   int choice;

13:   cout << "Enter a day (0-6): ";

14:   cin << choice;

15:

16:   if (choice = Sunday || choice == Saturday)

17:   cout << "\nYou're already off on weekends!\n";

18:   else

19:   cout << "\nOkay, I'll put in the vacation day.\n";

20:

21:   return 0;

22: }


Результат:

Enter a day (0-6): 6

You're already off on weekends!


Результаты работы этой программы идентичны результатам программы из листинга 3.7. Но в этом варианте все константы (Sunday, Monday и пр.) определены в явном виде и отсутствует тип перечисления Days. Обратите внимание, что программа с перечислением короче и логичнее.

Резюме

На этом занятии рассматривались числовые и символьные переменные и константы, которые в C++ используются для хранения данных во время выполнения программы. Числовые переменные могуг быть либо целыми (char, short и long int), либо вещественными (float и double). Кроме того, они могут быть знаковыми и беззнаковыми (unsigned). Хотя на различных компьютерах все эти типы могуг иметь разные размеры, но на одном компьютере переменные одного и того же типа всегда имеют постоянный размер.

Переменную нужно объявить до ее использования. При работе с данными необходимо следить, чтобы тип данных соответствовал объявленному типу переменной. Если, например, поместить слишком большое число в целую переменную, возникнет переполнение, которое приведет к неверному результату.

Кроме того, вы познакомились с литеральными, символьными и перечислимыми константами, а также с двумя способами объявления символьных констант: с помощью директивы #define и ключевого слова const.

Вопросы и ответы

Если переменные типа short int могут преподнести сюрприз в виде переполнения памяти, то почему бы не использовать во всех случаях переменные типа long int?

Как короткие (short), так и длинные (long) целочисленные переменные могут переполняться, но для того чтобы это произошло с типом long int, нужно уж слишком большое число. Например, переменная типа unsigned short int переполнится после

числа 65 535, в то время как переменная типа unsigned long int — только после числа 4 294 967 295. Однако на многих компьютерах каждое объявление длинного целого значения занимает вдвое больше памяти по сравнению с объявлением короткого целого (четыре байта против двух), и программа, в которой объявлено 100 таких переменных займет лишних 200 байт ОЗУ. Честно говоря, память сейчас перестала быть проблемой, поскольку большинство персональных компьютеров оснащено многими тысячами (если не миллионами) байтов памяти.

Что случится, если присвоить число с десятичной точкой целочисленной переменной, а не переменной типа float, как в следующей программной строке?

int aNumber = 5.4;

Хороший компилятор выдаст по этому поводу предупреждение, но такое присваивание совершенно правомочно. Присваиваемое число будет в таком случае усечено до целого. Следовательно, если присвоить число 5,4 целочисленной переменной, эта переменная получит значение 5. Однако налицо потеря информации, и если затем хранящееся в этой целой переменной значение вы попытаетесь присвоить переменной типа float, то вещественной переменной придется "довольствоваться" лишь значением 5.

Почему вместо литеральных констант лучше использовать символьные?

Если некоторое значение используется во многих местах программы, то применение символьной константы позволяет изменять все значения путем изменения одного, лишь определения этой константы. Кроме того, смысл символьной константы проще понять по ее названию. Ведь иногда трудно разобраться, почему некоторое значение умножается на число 360, а если это число будет заменено символьной константой degreesInACircle (градусов в окружности), то сразу становится ясно, о чем идет речь.

Что произойдет, если присвоить отрицательное число беззнаковой переменной?

Рассмотрите следующую строку программы:

unsigned int aPositiveNumber = -1;

Хороший компилятор отреагирует на это предупреждением, но такое присвоение вполне законно. Отрицательное число будет представлено в беззнаковом побитовом виде. Так, побитовое представление числа -1 выглядит как 11111111 11111111 (0xFFFF в шестнадцатеричном формате) и соответствует числу 65 535. Если вам что-то непонятно, обратитесь к приложению В.

Можно ли работать с языком C++, не имея представления о побитовом выражении числовых значений и арифметике двоичных и шестнадцатеричных чисел?

Можно, но эффективность работы снизится. Мощь языка C++ состоит не в том, чтобы уберечь вас от ненужных деталей работы компьютера, а в том, чтобы заставить компьютер работать с максимальной отдачей. В этом основное отличие C++ от других языков программирования. Программисты, которые не имеют представления, как работать с двоичными значениями, часто обескуражены получаемыми результатами.

Коллоквиум

В этом разделе предлагаются вопросы для самоконтроля и укрепления полученных знаний и приводится несколько упражнений, которые помогут закрепить ваши практические навыки. Попытайтесь самостоятельно ответить на вопросы теста и выполнить задания, а потом сверьте полученные результаты с ответами в приложении Г. Не приступайте к изучению материала следующей главы, если для вас остались неясными, хотя бы некоторые из предложенных ниже вопросов.

Контрольные вопросы

1. В чем разница между целочисленной и вещественной (с плавающей точкой) переменными?

2. Каково различие между типами unsigned short int и long int?

3. Каковы преимущества использования символьной константы вместо литерала?

4. Каковы преимущества использования ключевого слова const вместо директивы

    #define?

5. Как влияет на работу программы "хорошее" или "плохое" имя переменной?

6. Если перечисление (enum) заданно таким образом, то каково значение его члена Blue?

    enum COLOR { WHITE, BLACK = 100, RED, BLUE, GREEN = 300 };

7. Какие из следующих имен переменных можно считать хорошими, плохими или вообще недопустимыми?

    а) Age

    б) ! ex

    в) R79J

    г) TotalIncome

    д) _Invalid

Упражнения

1. Какой тип переменной был бы правильным для хранения следующей информации?

    • Ваш возраст.

    • Площадь вашего заднего двора.

    • Количество звезд в галактике.

    • Средний уровень выпадения осадков за январь.

2. Создайте подходящие имена переменных для хранения этой информации.

3. Объявите константу для числа pi, равного 3.14159.

4. Объявите переменную типа float и инициализируйте ее, используя константу pi.

День 4-й. Выражения и операторы

Программа представляет собой набор команд, выполняемых в определенной по­следовательности. Современные программы сильны тем, что выполняются не после­довательно, команда за командой от начала до конца программы, а по блокам. Каж­дый блок программы запускается в зависимости от выполнения заданного условия. Сегодня вы узнаете:

•   Что такое операторы

•   Что такое блоки

•   Что такое выражения

•   Как реализовать ветвление программы на основе результата выполнения заданного логического условия

•   Что такое ИСТИННО и ЛОЖНО с точки зрения программиста на C++

Выражения

В языке C++ выражения управляют последовательностью выполнения других выражений, возвращают результаты вычислений или ничего не делают (нулевые выражения). Все выражения в C++ оканчиваются точкой с запятой. Нулевое выражение представляет собой просто точку с запятой. Наиболее простой пример выражения — это операция присвоения значения:

В отличие от алгебры, это выражение не означает, что x равняется a+b. Данное выражение следует понимать так: присвоим результат суммирования значений переменных а и b переменной x, или присвоим переменной x значение a+b. Несмотря на то что в этом выражении выполняется сразу два действия — вычисление суммы и присвоение значения, после выражения устанавливается только один символ точки с запятой. Оператор (=) присваивает результаты операций, выполняемых над операндами, расположенными справа от знака равенства, операнду, находящемуся слева от него.

x = а + b;

Символы пробелов

Символы пробелов, к которым относятся не только пробелы, но и символы табуляции и разрыва строки, в выражениях обычно игнорируются. Рассмотренное выше выражение можно записать так:

x=a+b; или так:

x                 =              a

       +              b        ;

Хотя последний вариант абсолютно правомочен, выглядит он довольно глупо. Символы пробелов можно использовать для улучшения читабельности программы, что облегчит работу с ней. Но при неумелом использовании эти же пробелы могут совершенно запутать программный код. Создатели C++ предоставили много различных возможностей, а уж насколько эффективно они будут использоваться, зависит от вас.

Символы пробелов не отображаются на экране и при печати — видны только различные отступы и промежутки между элементами текста. 

Блоки и комплексные варажения

 Иногда для облегчения восприятия программы логически взаимосвязанные выражения удобно объединять в комплексы, называемые блоками. Блок начинается открывающей фигурной скобкой ({) и оканчивается закрывающей фигурной скобкой (}). Хотя каждое выражение в блоке должно оканчиваться точкой с запятой, после символов открытия и закрытия блока точки с запятой не ставятся, как в следующем примере:

 {

   temp = а;

   а = b;

   b = temp;

}

Этот блок выполняется как одно выражение, осуществляющее обмен значениями между переменными а и b.


Рекомендуется:Незабывайте о закрывающейфигурной скобке каждый раз, когда используется открывающая фигурная скобка. Завершайте выражения в программе символом точки с запятой


Не рекомендуется:Используйте разумно символы пробелов, чтобы сделать свою программу более понятной, а не наоборот.

Операции

Все, в результате чего появляется некоторое значение, в языке C++ называется операцией. Об операциях говорят, что они возвращают значение. Так, операция 3+2; возвращает значение 5. Все операции являются вместе с тем и выражениями.

Возможно, вы будете удивлены тому, что многие программные блоки рассматриваются как выражения. Приведем лишь три примера:


3.2 // возвращает значение 3.2

PI // вещественная константа, которая возвращает значение 3.14

SecondsPerMinute // целочисленная константа, которая возвращает 60


Предполагая, что PI — константа, равная 3.14, а SecondsPerMinute — константа, равная 60, можно утверждать, что все три выражения являются операциями. Выражение


x = а + b;


не только складывает значения переменных а и b, но и присваивает результат переменной x, т.е. возвращает результат суммирования переменной x. Поэтому данное выражение вполне можно назвать операцией. Операции всегда располагаются справа от оператора присваивания:


у = x = а + b;


Данное выражение выполняет представленную ниже последовательность действий. Прибавляем а к b.

Присваиваем результат выражения а + b переменной x.

Присваиваем результат выражения присваивания x = а + b переменной у.

Если переменные а, b, x и у являются целыми и если а имеет значение 2, а b — значение 5, то переменным x и у будет присвоено значение 7.

Пример выполнения некоторых выражений представлен в листинге 4.1.

Листинг 4.1. Выполнение сложных операций

1: #include <iostream.h>

2: int main()

3: {

4:    int a=0,   b=0,   x=0,   y=35;

5:    cout << " a:" << a << " b:" << b;

6:    cout << " x:" << x << " y:" << y << endl;

7:    a = 9;

8:    b = 7;

9:    y = x = a+b;

10:   cout << " a:" << a << " b:" << b;

11:   cout << " x:" << x << " y:" << y << endl;

12:   return 0;

13: }


Результат:

а: 0 b: 0 x: 0 у: 35

а: 9 b: 7 x: 16 у: 16


В строке 4 объявляются и инициализируются четыре переменные. Их значения выводятся в строках 5 и 6. В строке 7 переменной а присваивается значение 9. В строке 8 переменной b присваивается значение 7. В строке 9 значения переменных а и b суммируются, а результат присваивается переменной x. Результат операции x = a+b, в свою очередь, присваивается переменной у.

Операторы

Оператор — это литерал, который заставляет компилятор выполнять некоторое действие. Операторы воздействуют на операнды. Операндами в C++ могут быть как отдельные литералы, так и целые выражения. Язык C++ располагает двумя видами операторов:

• операторы присваивания;

• математические операторы.

Оператор присваивания

Оператор присваивания (=) позволяет заменить значение операнда, расположенного с левой стороны от знака равенства, значением, вычисляемым с правой стороны от него. Так, выражение

x = а + b;

присваивает операнду x значение, которое является результатом сложения значений переменных а и b.

Операнд, который может находиться слева от оператора присваивания, называется адресным операндом, или l-значением (от англ. слова left, т.е. левый). Операнд, который может находиться справа от оператора присваивания, называется операционным операндом, или r-значением (от англ. слова right, т.е. правый).

Константы могут быть только r-значениями и никогда не бывают адресными операндами, поскольку в ходе выполнения программы значения констант изменять нельзя. Так, можно записать:

x = 35; // правильно

Но нельзя записать:

35 = x; // ошибка!

Повторим: l-значение — это операнд, который может стоять в левой части выражения присваивания, а г-значение — операнд, который может стоять в правой части этого выражения. Обратите внимание, что все l-значения могут быть r-значениями, но не все r-значения могут быть l-значениями. Примером г-значения, которое не может быть l-значением, служит литеральная константа. Так, можно загасать: x = 5;, но нельзя записать: 5 = x; (x может быть l- или r-значением, а 5 может быть только r-значением).

Математические операторы

В C++ используется пять математических операторов: сложения (+), вычитания (-), умножения (*), целочисленного деления (/) и деления по модулю (%).

В операциях сложения и вычитания разобраться несложно: они возвращают сумму и разность двух операндов. Хотя следует отметить, что вычитание беззнаковых целых может привести к удивительным результатам, если полученная разность окажется отрицательным числом. Вы уже видели нечто подобное на прошлом занятии при описании переполнения переменных. В листинге 4.2 демонстрируется ситуация, когда из малого беззнакового числа вычитается большое беззнаковое число.

Листинг 4.2. Пример вычитания с переполнением целого числа  

1: // Листинг 4.2. Пример вычитания с

2: // переполнением целого числа

3: #include <iostream.h>

4:

5: int main()

6: {

7:   unsigned int difference;

8:   unsigned int bigNumber = 100;

9:   unsigned int smallNumber = 50;

10:   difference = bigNumber - smallNumber;

11:   cout << "Difference is: " << difference;

12:   difference = smallNumber - bigNumber;

13:   cout << "\nNow difference is: " << difference << endl;

14:   return 0;

15: }


Результат:

Difference is: 50

Now difference is: 4294967246


Анализ: Оператор вычитания используется в строке 10, а результат выводится на экран в строке 11, в данном случае вполне ожидаемый. В строке 12 вновь вызывается оператор вычитания, но на этот раз большое беззнаковое число вычитается из малого беззнакового числа. Результат должен быть отрицательным, но поскольку он вычисляется (и выводится) как беззнаковое число, происходит переполнение, о чем говорилось на прошлом занятии. Эта тема подробно рассматривается в приложении А.

Целочисленное деление и деление по модулю

Целочисленное деление несколько отличается от обычного. Целочисленное деление — это то же caмoe деление, которое вы изучали, когда ходили в первый класс. При делении числа 21 на число 4 (21/4) в случае целочисленного деления в ответе получается 5 и остаток 1.

Чтобы получить остаток, нужно число 21 разделить по модулю 4 (21 % 4), в результате получим остаток 1.

Операция деления по модулю иногда оказывается весьма полезной, например, если вы захотите вывести из ряда чисел каждое десятое значение. Любое число, результат деления которого по модулю 10 равен нулю, является кратным десяти, т.е. делится на 10 без остатка. Так, результат выражения 1 % 10 равен 1; 2 % 10 равен 2 и т.д.; а 10 % 10 равен 0. Результат от деления 11 % 10 снова равен 1; 12 % 10 снова равен 2; и так можно продолжать до следующего числа, кратного 10, которым окажется 20. Мы воспользуемся этим методом при рассмотрении циклов на занятии 7.

Вопросы и ответы

При делении 5 на 3 я получаю в ответе 1. В чем моя ошибка?

При делении одного целого числа на другое в качестве результата вы также получите целое число. Следовательно, 5/3 равно 1.

Для получения дробного результата нужно использовать вещественные числа. Выражение 5,0 / 3,0 даст дробный ответ: 1,66667.

Если ваш метод принимает в качестве параметров целочисленные значения, нужно привести их к типу float.


Вопросы и ответы: Выполняя операцию приведения типа переменной, вы заставляете компилятор изменить ее тип. Приэтом вы как будто говорите своемукомпилятору:"Я знаю, что делаю". Было бы неплохо, если бы это оказалось правдой, поскольку компилятор как бы отвечает вам: "Как скажете, босс: вся ответственность ложится на вас". В данном случае мы хотим сказать компилятору: "Я понимаю, что ты считаешь это значение целым, но я знаю, что делаю: это действительно вещественное значение". Для приведения типа существует два способа. Можно использовать приведение типа в старом стиле С или новый улучшенный оператор ANSIstatic_cast. Оба варианта демонстрируются в листинге 4.3.


Листинг 4.3. Приведение переменной к типу float 

1: #include <iostream.h>

2:

3: void intDiv(int x, int y)

4: {

5:    int z = x / y;

6:    cout << "z: " << z << endl;

7: }

8:

9:  void floatDiv(int x, int y)

10: {

11:    float a = (float)x; // старый стиль

12:    float b = static_cast<float>(y);   // современный стиль

13:    float c = a / b;

14:

15:    cout << "c: " << c << endl;

16: }

17:

18: int main()

19: {

20:    int x = 5, y = 3;

21:    intDiv(x,y);

22:    floatDiv(x,y);

23:    return 0;

24: }


Результат:

z: 1

с: 1.66667


Анализ: В строке 20 объявляются две целочисленные переменные. В строке 21 они как параметры передаются функции intDiv, а в строке 22 — функции floatDiv. Вторая функция начинается со строки 9. В строках 11 и 12 целые значения приводятся к вещественному типу и присваиваются переменным типа float. Результат деления присваивается третьей переменной типа float в строке 13 и выводится на экран в строке 15.

Совместное использование математических операторов с операторами присваивания

Нет ничего необычного в том, чтобы к переменной прибавить некоторое значение, а затем присвоить результат той же переменной. Если у вас есть переменная myAge и вы хотите увеличить ее значение на два, можно записать следующее:


int myAge = 5;

int temp;

temp = myAge + 2; // складываем 5 + 2 и результат помещаем в

temp myAge = temp; // значение возраста снова помещаем в myAge


Однако этот метод грешит излишествами. В языке C++ можно поместить одну и ту же переменную по обе стороны оператора присваивания, и тогда предыдущий блок сведется лишь к одному выражению:


myAge = myAge + 2;


В алгебре это выражение рассматривалось бы как бессмысленное, но в языке C++ оно читается следующим образом: добавить два к значению переменной myAge и присвоить результат переменной myAge.

Существует еще более простой вариант предыдущей записи, хотя его труднее читать:


myAge += 2;


Этот оператор присваивания с суммой (+=) добавляет r-значение к l-значению, а затем снова записывает результат в l-значение. Если бы до начала выполнения выражения переменная myAge имела значение 4, то после ее выполнения значение переменной myAge стало бы равным 6.

Помимо оператора присваивания с суммой существуют также оператор присваивания с вычитанием (-=), делением (/=), умножением (*=) и делением по модулю (%=).

Инкремент декремент

Очень часто в программах к переменным добавляется (или вычитается) единица. В языке C++ увеличение значения на 1 называется инкрементом, а уменьшение на 1 — декрементом. Для этих действий предусмотрены специальные операторы.

Оператор инкремента (++) увеличивает значение переменной на 1, а оператор декремента (--) уменьшает его на 1. Так, если у вас есть переменная С и вы хотите прирастить ее на единицу, используйте следующее выражение:


C++; // Увеличение значения С на единицу


Это же выражение можно было бы записать следующим образом:


С = С + 1;


что, в свою очередь, равносильно выражению.


С += 1;

Префикс и постфикс

Как оператор инкремента, так и оператор декремента работает в двух вариантах: префиксном и постфиксном. Префиксный вариант записывается перед именем переменной (++myAge), а постфиксный — после него (myAge++).

В простом выражении вариант использования не имеет большого значения, но в сложном при выполнении приращения одной переменной с последующим присваиванием результата другой переменной это весьма существенно. Префиксный оператор вычисляется до присваивания, а постфиксный — после.

Семантика префиксного оператора следующая: инкрементируем значение, а затем считываем его. Семантика постфиксного оператора иная: считываем значение, а затем декрементируем оригинал.

На первый взгляд это может выглядеть несколько запутанным, но примеры легко проясняют механизм действия этих операторов. Если x — целочисленная переменная, значение которой равно 5, и, зная это, вы записали

int а = ++x;

то тем самым велели компилятору инкрементировать переменную x (сделав ее равной 6), а затем присвоить это значение переменной а. Следовательно, значение переменной а теперь равно 6 и значение переменной x тоже равно 6. Если же, после этого вы записали

int b = x++;

то тем самым велели компилятору присвоить переменной b текущее значение переменной x (6), а затем вернуться назад к переменной x и инкрементировать ее. В этом случае значение переменной b равно 6, но значение переменной x уже равно 7. В листинге 4.4 продемонстрировано использование обоих типов операторов инкремента и декремента.

Листинг 4.4. Примеры использования префиксных и постфиксных операторов 

1: // Листинг 4.4. Демонстрирует использование

2: // префиксных и постфиксных операторов

3: // инкремента и декремента

4: #include <iostream.h>

5: int main()

6: {

7:    int myAge = 39;  // инициализируем две целочисленные переменные

8:    int yourAge = 39;

9:    cout << "I am: " << myAge << " years old.\n";

10:   cout << "You are: " << yourAge << " years old\n";

11:   myAge++;    // постфиксный инкремент

12:   ++yourAge;   // префиксный инкремент

13:   cout << "One year passes...\n";

14:   cout << "I am: " << myAge << " years old.\n";

15:   cout << "You are: " << yourAge << " years old\n";

16:   cout << "Another year passes\n";

17:   cout << "I am: " << myAge++ << " years old.\n";

18:   cout << "You are: " << ++yourAge << " years old\n";

19:   cout << "Let's print it again.\n";

20:   cout << "I am: " << myAge << " years old.\n";

21:   cout << "You are: " << yourAge << " years old\n";

22:   return 0;

23: }


Результат:

I am 39 years old

You are 39 years old

One year passes

I am 40 years old

You are 40 years old

Another year passes

I am 40 years old

You are 41 years old

Let's print it again

I am 41 years old

You are 41 years old


Анализ: В строках 7 и 8 объявляются две целочисленные переменные и каждая из них инициализируется значением 39. Значения этих переменных выводятся в строках 9 и 10.

В строке 11 инкрементируется переменная myAge с помощью постфиксного оператора инкремента, а в строке 12 инкрементируется переменная yourAge с помощью префиксного оператора инкремента. Результаты этих операций выводятся в строках 14 и 15; как видите, они идентичны (обоим участникам нашего эксперимента по 40 лет).

В строке 17 инкрементируется переменная myAge (также с помощью постфиксного оператора инкремента), являясь при этом частью выражения вывода на экран. Поскольку здесь используется постфиксная форма оператора, то инкремент выполняется после операции вывода, поэтому снова было выведено значение 40. Затем (для сравнения с постфиксным вариантом) в строке 18 инкрементируется переменная yourAge с использованием префиксного оператора инкремента. Эта операция выполняется перед выводом на экран, поэтому отображаемое значение равно числу 41.

Наконец, в строках 20 и 21 эти же значения выводятся снова. Поскольку приращения больше не выполнялись, значение переменной myAge сейчас равно 41, как и значение переменной yourAge (все правильно: стареем мы все с одинаковой скоростью!).

Приоритеты операторов

Какое действие — сложение или умножение — выполняется первым в сложном выражении, например в таком, как это:


X = 5 + 3 * 8;


Если первым выполняется сложение, то ответ равен 8 * 8, или 64. Если же первым выполняется умножение, то ответ равен 5 + 24, или 29.

Каждый оператор имеет значение приоритета (полный список этих значений приведен в приложении А). Умножение имеет более высокий приоритет, чем сложение, поэтому значение этого "спорного" выражения равно 29.

Если два математических оператора имеют один и тот же приоритет, то они выполняются в порядке следования слева направо. Значит, в выражении


X = 5 + 3 + 8 * 9 + 6 * 4;


сначала вычисляется умножение, причем слева направо: 8*9 = 72 и 6*4 = 24. Теперь то же выражение выглядит проще:


x = 5 + 3 + 72 + 24;


Затем выполняем сложение, тоже слева направо: 5 + 3 = 8; 8 + 72 = 80; 80 + 24 = 104. Однако будьте осторожны — не все операторы придерживаются этого порядка выполнения. Например, операторы присваивания вычисляются справа налево! Но что же делать, если установленный порядок приоритетов не отвечает вашим намерениям? Рассмотрим выражение:

TotalSeconds = NumMinutesToThink + NumMinutesToType * 60

Предположим, что в этом выражении вы не хотите умножать значение переменной NumMinutesToType на число 60, а затем складывать результат со значением переменной NumMinutesToThink. Вам нужно сначала сложить значения двух переменных, чтобы получить общее число минут, а затем умножить это число на 60, получив тем самым общее количество секунд.

В этом случае для изменения порядка выполнения действий, предписанного приоритетом операторов, нужно использовать круглые скобки. Элементы, заключенные в круглые скобки, имеют более высокий приоритет, чем любые другие математические операторы. Поэтому для реализации ваших намерений приведенное выше выражение нужно представить в таком виде:

TotalSeconds = (NumMinutesToThink + NumMinutesToType) * 60

Вложение круглых скобок

При создании сложных выражений может возникнуть необходимость вложить круглые скобки друг в друга. Например, вам нужно вычислить общее число секунд, затем общее число включенных в рассмотрение людей, а уж потом перемножить эти числа:


TotalPersonSeconds = ( ( (NumMinutesToThink + NumMinutesToType) * 60) * (PeopleInTheOffice + PeopleOnVacation) )

Это сложное выражение читается изнутри. Сначала значение переменной NumMinutesToThink складывается со значением переменной NumMinutesToType, поскольку они заключены во внутренние круглые скобки. Затем полученная сумма умножается на 60. После этого значение переменной PeopleInTheOffice прибавляется к значению переменной PeopleOnVacation. Наконец, вычисленное общее количество людей умножается на общее число секунд.

Этот пример затрагивает близкую и не менее важную тему. Приведенное выше выражение легко вычисляется компьютером, но нельзя сказать, что человеку его так же легко читать, понимать и модифицировать. Вот как можно переписать это выражение с помощью временных целочисленных переменных:


TotalMinutes = NumMinutesToThink + NumMinutesToType; TotalSeconds = TotalMinutes * 60; TotalPeople = PeopleInTheOffice + PeopleOnVacation; TotalPersonSeconds = TotalPeople * TotalSeconds;


Для записи этого варианта требуется больше времени и много временных переменных, но он гораздо легче для понимания. Осталось лишь добавить комментарии, разъясняющие назначение этого программного кода, и заменить число 60 символьной константой. И тогда можно считать этот программный фрагмент практически идеальным для чтения и дальнейшей эксплуатации.


Рекомендуется:Помните, что выражения оперируют значениями. Используйте префиксный оператор (++переменная) для инкремента или декремента переменной перед ее использованием в выражении. Используйте постфиксный оператор (переменная++) для инкремента или декремента переменной после ее использования в выражении. Используйте круглые скобки для изменения порядка выполнения операторов, обусловленного их приоритетами.


He рекомендуется:Не используйте слишком много вложенных круглых скобок, поскольку такие выражения становятся трудными для понимания.

Что такое ИСТИННО

В предыдущих версиях языка C++ результаты логических выражений представлялись целочисленными значениями, но в новом стандарте ANSI введен новый тип — bool, имеющий только два возможных значения: true или false.

Любое выражение может быть рассмотрено с точки зрения его истинности или ложности. Математические выражения, возвращающие нуль, можно использовать для присвоения значения false логической переменной, а любой другой результат будет означать true.


Примечание:Многие компиляторы и раньше были сориентированы на тип bool, который внутренне представлялся с помощью типа long int и поэтому имел размер, равный четырем байтам. Ныне ANSI-совместимые компиляторы часто обеспечивают однобайтовый тип bool.

Операторы отношений

Такие операторы используются для выяснения равенства или неравенства двух значений. Выражения сравнения всегда возвращают значения true (истина) или false (ложь). Операторы отношения представлены в табл. 4.1.


Примечание:В новом стандарте ANSI предусмотрен новый тип bool, и все операторы отношений теперь возвращают значение типа bool— true и false. В предыдущих версиях языка C++ эти операторы возвращали 0 в качестве false или любое ненулевое значение (обычно 1) в качестве true.


Если одна целочисленная переменная myAge содержит значение 39, а другая целочисленная переменная yourAge — значение 40, то, используя оператор равенства (==), можно узнать, равны ли эти переменные:


myAge == yourAge; // совпадает ли значение переменной myAge со значением переменной yourAge?


Это выражение возвращает 0, или false (ложь), поскольку сравниваемые переменные не равны. Выражение


myAge > yourAge; // значение переменной myAge больше значения переменной yourAge? также возвратит 0 (или false).


Предупреждение:Многие начинающие программировать на языке C++ путают оператор присваивания (=) с оператором равенства (==). Случайное использование не того оператора может привести к такой ошибке, которую трудно обнаружить.


Всего в языке C++ используется шесть операторов отношений: равно (==), меньше (<), больше (>), меньше или равно (<=), больше или равно (>=) и не равно (!=). В табл. 4.1 не только перечислены все операторы отношений, но и приведены примеры их использования.

Рекомендуется: Помните, что операторы отношений true или false.

He рекомендуется:Не путайте оператор присваивания (=) с оператором равенства (==). Это одна из самых распространенных ошибок программирования на языке C++ — будьте начеку!

Таблица 4.1. Операторы отношений

Оператор if

Обычно программа выполняется по порядку, строка за строкой. Оператор if позволяет проверить условие (например, равны ли две переменные) и изменить ход выполнения программы, направив ее в другое русло, которое будет зависеть от результата сравнения. Простейшая форма оператора if имеет следующий вид:


if(условие)

    выражение;


Условие в круглых скобках может быть любым выражением, но обычно оно содержит операторы отношений. Если это выражение возвращает false, то последующий оператор пропускается. Если же оно возвращает значение true, то оператор выполняется. Рассмотрим следующий пример:


if(bigNumber > smallNumber)

    bigNumber = smallNumber;


Здесь сравниваются значения переменных bigNumber и smallNumber. Если значение переменной bigNumber больше, то во второй строке этого программного фрагмента ее значение устанавливается равным значению переменной smallNumber.

Поскольку блок выражений, заключенных в фигурные скобки, эквивалентен одному выражению, то это свойство позволяет за строкой с оператором if использовать целые блоки, которые могут быть довольно обширными:


if(условие)

{

   выражение 1;

   выражение2;

   выражениеЗ;

}


Вот простой пример применения блока выражений:


if(bigNumber > smallNumber)

{

   bigNumber = smallNumber;

   cout << "bigNumber: " << bigNumber << "\n";

   cout << "smallNumber: " << smallNumber << "\n";

}


На этот раз, если значение переменной bigNumber больше значения переменной smallNumber, то большая переменная не только устанавливается равной значению меньшей переменной, но на экран выводятся также информационные сообщения. В листинге 4.5 показан еще один пример ветвления программы, основанный на использовании операторов отношений.

Листинг 4.5. Пример ветвления с использованием операторов отношений 

1: // Листинг 4.5. Демонстрирует использование

2: // инструкции if совместно с операторами отношений

3: #include <iostream.h>

4: int main()

5: {

6:    int RedSoxScore, YankeesScore;

7:    cout << "Enter the score for the Red Sox: ";

8:    cin >> RedSoxScore;

9:

10:   cout << "\nEnter the score for the Yankees: ";

11:   cin >> YankeesScore;

12:

13:   cout << "\n";

14:

15:   if (RedSoxScore > YankeesScore)

16:     cout << "Go Sox!\n";

17:

18:   if (RedSoxScore < YankeesScore)

19:   {

20:     cout << "Go Yankees!\n";

21:     cout << "Happy days in New York!\n";

22:   }

23:

24:   if (RedSoxScore == YankeesScore)

25:   {

26:     cout << "A tie? Naah, can't be.\n";

27:     cout << "Give me the real score for the Yanks: ";

28:     cin >> YankeesScore;

29:

30:     if (RedSoxScore > YankeesScore)

31:       cout << "Knew it! Go Sox!";

32:

33:     if (YankeesScore > RedSoxScore)

34:       cout << "Knew it! Go Yanks!";

35:

36:     if (YankeesScore == RedSoxScore)

37:       cout << "Wow, it really was a tie!";

38:

39:   }

40:   cout << "\nThanks for telling me.\n";

41:   return 0;

42: }


Результат:

Enter the score for the Red Sox: 10

Enter the score for the Yankees: 10

A tie? Naah, can't be

Give me the real score for the Yanks: 8

Knew it! Go Sox!

Thanks for telling me..


Анализ: В этой программе пользователю предлагается ввести счет очков для двух бейсбольных команд. Введенные очки сохраняются в целочисленных переменных. Значения этих переменных сравниваются оператором if в строках 15, 18 и 24.


Предупреждение:Многие начинающие программисты по невнимательности ставят точку с запятой после выражения с оператором if:

if (SomeValue < 10); SomeValue = 10;

В этом программном фрагменте было задумано сравнить значение переменной SomeValue с числом 10 и, если окажется, что оно меньше десяти, установить его равным этому числу, т.е. зафиксировать минимальное значение переменной SomeValue на уровне 10. При выполнении этого программного фрагмента обнаруживается, что переменная SomeValue (вне зависимости от ее исходного значения) всегда устанавливается равной 10. В чем же дело? А дело в том, что оператор if, вернее, связанное с ним выражение сравнения, оканчивается точкой с запятой, создавая тем самым бездействующую инструкцию. Помните, что для компилятора отступ не играет никакой роли. Приведенный выше программный фрагмент можно переписать по-другому:


if (SomeValue < 10) // проверка

; // пустое выражение, контролируемое оператором if

SomeValue = 10; // присваивание


При удалении ненужной точки с запятой последняя строка этого фрагмента станет частью конструкции с оператором if и программа заработает в соответствии с намерением программиста.


Если очки одной команды больше очков другой, на экран выводится соответствующее сообщение. Если сравниваемые очки равны, программа выполняет блок выражений, который начинается в строке 25 и оканчивается в строке 38. В этом блоке снова запрашивается счет очков для команды из Нью-Йорка, после чего вновь выполняется сравнение результатов игры команд.

Обратите внимание: если начальный счет команды Yankees превышает счет команды Red Sox, то оператор if в строке 15 возвратит значение false и строка 16 не будет выполняться. Проверка же в строке 18 даст истинный результат (true) и будут выполнены выражения в строках 20 и 21. Затем с помощью оператора if в строке 24 будет проверено равенство очков; результат этого тестирования должен быть ложным (false) (иначе и быть не может, если проверка в строке 18 дала в результате значение true). В этом случае программа пропустит целый блок и перейдет сразу к выполнению строки 39.

В данном примере получение истинного результата одним оператором if не избавляет от выполнения проверок другими операторами if.

Использование отступов в программных кодых

Обратите внимание, как в листинге 4.4 используются отступы в конструкции с оператором if. Наверное, фанаты программирования могли бы развязать войну по поводу того, какой стиль выделения программных блоков лучше использовать. И хотя возможны десятки различных стилей, чаще других используются три перечисленных ниже.

• Начальная открывающая скобка располагается после условия, а закрывающая фигурная скобка, которая завершает блок операторов, выравнивается по одной линии с оператором if:

If (условие) {

   выражение

}

• Фигурные скобки располагаются под словом if, выравниваясь по одной линии, а операторы блока записываются с отступом:

if (условие)

{

   выражение

}

• Отступ используется как для обеих фигурных скобок, так и для выражений блока:

if (условие)

{

  выражение

  }

Вариант, используемый в этой книге, отражает лишь пристрастие автора и ни к чему вас не обязывает.

Ключевое слово else

Довольно часто в программах требуется, чтобы при выполнении некоторого условия (т.е. когда это условие возвратит значение true) программа выполняла один блок команд, а при его невыполнении (т.е. когда это условие возвратит значение false) —

другой блок. В листинге 4.4 программист намеревался выводить на экран одно сообщение, если первая проверка (RedSoxScore > Yankees) возвращает значение true, и другое сообщение, если эта проверка возвращает значение false.

Показанный выше способ последовательного использования нескольких операторов if для проверки ряда условий прекрасно работает, но слишком громоздкий. Улучшить читабельность программы в подобных случаях можно с помощью ключевого слова else (листинг 4.6):

if (условие)

   выражение;

else

   выражение;


Листинг 4.6. Пример использования ключевого слова else

1: // Листинг 4.6. Пример конструкции с ключевыми

2: // словами if и else

3: #include <iostream.h>

4: int main()

5: {

6:    int firstNumber, secondNumber;

7:    cout << "Please enter a big number: ";

8:    cin >> firstNumber;

9:    cout << "\nPlease enter a smaller number: ";

10:   cin >> secondNumber;

11:   if (firstNumber > secondNumber)

12:     cout << "\nThanks!\n";

13:   else

14:     cout << "\nOops. The second is bigger!";

15:

16:   return 0;

17: }


Результат:

Please enter a big number: 10

Please enter a smaller number: 12

Oops. The second is bigger!


Анализ: В строке 11 проверяется условие, заданное в операторе if. Если это условие истинно, будет выполнена строка 12, после чего работа программы завершится в строке 16. Если же это условие возвратит false, программа продолжит работу со строки 14. Если в строке 13 удалить ключевое слово else, строка 14 будет выполнена в любом случае, вне зависимости от выполнения условия. Но в данной конструкции if-else будет выполняться либо блок после if, либо блок после else.

Помните, что в конструкции if-else можно использовать не только отдельные выражения, но и целые блоки выражений, заключенных в фигурные скобки.

Оператор

Сложные конструкции с if

Нет никаких ограничений на использование любых операторов в блоках выражений в конструкции if-else, в том числе на использование дополнительных операторов if и else. В этом случае будет получена вложенная конструкция из нескольких операторов if:

if (условие1)

{

  if (условие2)

    выражение1;

  else

  {

    if (условиеЗ) выражение2;

  else

    выражениеЗ;

  }

}

else

  выражение4;

Смысл этой конструкции из нескольких операторов if можно расшифровать так: если условие1 истинно и условие2 истинно, выполните выражение1. Если условие1 истинно, а условие2 — нет, тогда проверьте условиеЗ и, если оно истинно, выполните выражение2. Если условие1 истинно, а условие2 и условиеЗ — нет, тогда выполните выражениеЗ. Наконец, если условие1 ложно, выполните выражение4. Да, вложенные операторы if могут кого угодно запутать!

Пример использования такой сложной конструкции с несколькими операторами if показан в листинге 4.7.

Листинг 4.7. Сложные конструкции с вложенными операторами if ...



Все права на текст принадлежат автору: Джесс Либерти.
Это короткий фрагмент для ознакомления с книгой.
Освой самостоятельно С++ за 21 день.Джесс Либерти