Все права на текст принадлежат автору: Вильгельм Штрубе.
Это короткий фрагмент для ознакомления с книгой.
Пути развития химии. Том 2. От начала промышленной революции до первой четверти XX векаВильгельм Штрубе

Вильгельм Штрубе Пути развития химии. Том 2. От начала промышленной революции до первой четверти XX века

Предисловие редактора перевода

Настоящая книга представляет собой второй том двухтомного издания "Пути развития химии" известного историка науки из ГДР Вильгельма Штрубе. Она является ответом на все возрастающий в последнее время интерес читателей к истории химии. В этой книге, по существу, впервые в мировой историко-химической литературе ход развития химических теорий рассматривается в тесной связи с разнообразным применением их в лабораторной, ремесленной и промышленной практике. Большое внимание в настоящей работе В. Штрубе уделяет показу взаимозависимости теории и практики в развитии химических знаний, а также объяснению обоюдного влияния становления химии как науки и изменений общественного устройства, экономики и политики тех государств, в которых зарождались важнейшие химические теории или методы исследований.

Наиболее подробно автор анализирует положение в германских государствах. Поэтому для читателей русского издания редактором перевода сделаны в соответствующих местах публикуемой книги примечания, в которых широко освещены результаты работ советских историков химии. В дополнительном списке литературы [175-274] редактором приведены также труды историков химии и оригинальные работы ученых-химиков, на которые есть ссылки в примечаниях редактора.

Несомненным достоинством книги В. Штрубе является множество приводимых в ней сведений биографического плана о различных ученых и специалистах в области химической промышленности. Читателя, по нашему мнению, также заинтересует и приведенная автором краткая историография, дополняющая историографию химии, написанную советским историком химии Г. В. Быковым (см. Крицман В. А., Быков Г. В. Герман Копп.- М.: Наука, 1978, с. 86-140). Много полезных сведений содержится в приложениях к книге. В них можно узнать о хронологии открытия химических элементов, ознакомиться с лауреатами Нобелевских премий по химии, физике и медицине за 1901-1925 гг[1],. найти сведения о важнейших научных (главным образом химических) журналах, основанных в 1665-1896 гг.

Мы надеемся, что книгу с пользой для себя прочтут многие в нашей стране: учащиеся, студенты, преподаватели средней и высшей школы, а также все желающие ознакомиться с очень интересной и поучительной историей возникновения химических знаний.

Это двухтомное издание, как представляется, удачно дополнит опубликованные в последнее время в СССР книги, в которых также освещаются вопросы истории химии: "Книга для чтения по неорганической химии" (сост. В. А. Крицман.- 2-е изд. Ч. 1 и 2.- М.: Просвещение, 1983, 1984); "Энциклопедический словарь юного химика" (под ред. М. А. Прокофьева,- М.:Педагогика, 1982); Фигуровский Я. А., "История химии" (М: Просвещение, 1979); Соловьев Ю.И., "История химии. Развитие химии с древнейших времен до конца XIX века" (М.: Просвещение, 1976); Соловьев Ю. И., Трифонов Д. Я., Шамин А.Н., "История химии" (М: Просвещение, 1978); "Биографии великих химиков" (под ред. К. Хайнига.- М.: Мир, 1981).

В. Крицман

Я убежден, что изучение естественных наук, широкое распространение научной методологии помогут в конце концов человечеству при решении важных общественных и политических вопросов.

Лайнус Полинг[2][1]

Предисловие

В 1976 г. вышел в свет первый том этой книги, охватывающий период истории химии от первобытных времен до промышленной революции. Затем он дважды переиздавался — в 1978 и 1981 гг. Теперь, несколько позднее, чем предполагалось, выходит из печати второй том. В нем рассматривается развитие химии с конца XVIII в. до начала XX в., от химической системы Лавуазье до модели атома Бора — Резерфорда. За последние десять лет настоящий двухтомник — это, по существу, первая книга на немецком языке, в которой проанализировано развитие химии с древнейших времен до начала XX столетия.

По сравнению с историческим периодом, представленным в первом томе, данный том охватывает относительно небольшой отрезок времени. Однако именно за эти примерно 130 лет химические знания изменились необычайно. Если в начале XIX в. значение химии как научной дисциплины еще приходилось доказывать, то спустя 100 лет химия была признана всеми как наука, успешно развивающаяся и имеющая громадное значение.

В 1800 г. оснащенная оборудованием лаборатория казалась еще роскошью, а к 1900 г. для экспериментаторов, занимающихся научными исследованиями в учебных заведениях, академиях и на химических предприятиях, работа в хорошо оборудованных лабораториях стала обычным явлением. Научные методы и оборудование лабораторий настолько усовершенствовались, что оказалось возможным уточнить представление об атоме как о реальной частице. В начале XX в. стали появляться книги, в которых были собраны сведения об элементах, соединениях и их превращениях.

В этом томе проанализированы этапы формирования теории и совершенствования экспериментальных навыков в химии до начала интенсивного промышленного развития, когда обе эти стороны химической науки стали играть все большую роль в развитии химической индустрии. И хотя по методическим соображениям история развития теоретической химии рассматривается здесь отдельно от истории развития экспериментальной химии, несомненно, что обе эти области составляют единое целое.

Автор приносит благодарность за критические замечания, ценные советы и исправления профессору Горной академии (Фрейберг) д-ру Г. Аккерману, профессору Высшей химико-технической школы им. Карла Шорлеммера (Лейна-Мерзебург) д-ру 3. Энгельсу, доценту Университета им. Эрнста Морица Арндта (Грайфсвальд) д-ру Р. Гелиусу, доценту Университета им. Мартина Лютера (Галле) д-ру Р. Штольцу.

Автор благодарит также неутомимых помощников — работников архивов и библиотек и особенно X. Штрубе за помощь при редактировании книги.

В. Штрубе

Развитие химической теории

В основе любой области естествознания лежит обычное наблюдение за явлениями природы; лишь постепенно на этой основе создается наука.

Юстус Либих [2, с. 2]

Наследие восемнадцатого столетия

В последней трети XVIII в. химия переживала величайший революционный переворот. Перемены в химических знаниях были столь обширными, что связь с прошлым казалась прерванной. Химия получила новую теорию, новую терминологию и номенклатуру. В это время происходило обособление отдельных областей химических знаний, а в промышленности начали возникать специализированные химические предприятия.

В начале XIX в. английский историк науки Уильям Уэвелл характеризовал этот переворот как "шаг к обобщению" [3], а около ста лет спустя Томас Кун определил его как "смену парадигм"[3] [4, с. 24 и cл.].

В книге "Химия и ее история" [5] показано, что периоды накопления и наивысшего развития знаний в истории химии были обусловлены непрерывным и дискретным характером ее развития.

Постепенное накопление опытных данных и сведений (кумуляция) заканчивается фазой наивысшего развития (кульминацией) — коренным, качественным изменением какой-либо теории, метода или системы.

Кульминационные периоды различны по своей эффективности. Лишь некоторые из них открывают новую эпоху. Например, в астрономии это переход к представлениям о гелиоцентрической системе мира от представлений о геоцентрической системе, а в химии — переход к теоретической эпохе от эмпирической.

Бывали в химии кульминационные периоды, которые Уэвелл назвал большими или меньшими "шагами" на пути к прогрессу, например открытие минеральных кислот или создание флогистонной теории Г. Э. Шталя. Эти и многие другие "шаги" способствовали новой эпохе развития химических знаний, но не они определили ее наступление.

В первом томе этой книги приведено обоснование деления истории химии на два этапа — эмпирический и теоретический. Такое деление обусловлено тем, что химия конца XVIII в. переживала процесс глубоких преобразований, или основной кульминационный период. До химической революции[4] решающую роль в развитии химии играл эксперимент, хотя в XVII — XVIII вв. уже все большее значение начинала приобретать теория. Следует помнить, что классификация всегда является лишь дополнительным средством для ориентации в развитии науки, и абсолютизировать ее не следует. Указанная классификация характеризует главную тенденцию в развитии знаний и вовсе не свидетельствует о том, что в один период истории определяющей является только практика, а в другой — только теория [6]. В период развития теории эксперимент по-прежнему сохранил свое особое значение, и именно только в сочетании с экспериментальными методами исследования теория приобрела решающее значение для развития всех областей химии.

Химия стала наукой, по мнению одних, лишь с развитием теоретических представлений, по мнению других, в период между 1540 и 1740 гг. [7]. Ссылаясь на некоторые источники, ряд исследователей утверждают, что развитие химии началось в XVI в., с работ Парацельса и Агриколы, когда постепенно начало складываться понятие научной химии[5]. Кульминационный момент в этом развитии наступил благодаря созданию системы Лавуазье. Тем не менее в предшествующий период химиками также были достигнуты важные теоретические результаты. Среди них особенно выделяется теория флогистона. Она являлась вершиной развития химических знаний до тех пор, пока не была создана антифлогистонная теория Лавуазье. Г. Шталю для объяснения горения нужен был гипотетический флогистон, а Лавуазье смог объяснить процесс окисления и восстановления как результат превращения реально участвующих в этих процессах элементов. С этого момента критерием правильности теории в химии . стало качественное и количественное экспериментальное доказательство. Так, например, закон эквивалентов И. Рихтер сумел обосновать, проводя многочисленные опыты с кислотами и основаниями. Лишь признав необходимость точных доказательств для подтверждения теоретических воззрений, химия превратилась в современную науку.

При этом гипотезы не потеряли своего значения, но появилась возможность четко разграничивать гипотезы и теории. Между ними образовалась динамическая связь, так как объяснения с помощью гипотез способствовали проведению новых экспериментов и выдвижению новых идей. Разграничение понятий "теория" и "гипотеза" нельзя воспринимать как их противопоставление. Теории, как правило, включают в себя гипотезы, потому что область их применения расширяется с появлением новых экспериментальных данных. В то же время гипотеза обычно также содержит рациональное зерно.

В процессе эволюции каждый конечный пункт служит одновременно и исходным пунктом. Например, революция в химии, совершенная Лавуазье, получила дальнейшее развитие при открытии ряда законов и появлении химической атомистики Дальтона.

Социально-экономические основы развития химии

Кульминационный период, знаменующий переход от эмпирической химии к становлению химической теории, характеризуется не только как переломный момент в развитии химических знаний. Этот кульминационный период, вызвавший к жизни новую эпоху, был тесно связан с различными общественными процессами, в частности с промышленной революцией и борьбой буржуазии за власть.

Как правило, химик XVIII в. был по своему происхождению буржуа, а буржуазия к этому времени заметно активизировала борьбу за свою экономическую, политическую и духовную свободу. Представители нарождающегося класса буржуазии чувствовали себя обделенными дворянскими привилегиями. Они были недовольны тем, что развитие промышленного производства определялось в основном узкоцеховой деятельностью ремесленных объединений. К тому же буржуазия стремилась освободиться от догматической идеологии. В XVIII в. подобные взгляды нашли отражение и в произведениях философов, поэтов и экономистов, в статьях и книгах по химии. В тот период слепой вере в авторитеты был противопоставлен разум, критерием истинности любого высказывания стала практика. Химики, будь то Шталь или Ломоносов, Бергман или Пристли, представляли интересы буржуазии. Поэтому они разделяли ее экономические и естественнонаучные воззрения. Углубление химических знаний, по их мнению, должно было способствовать улучшению производственных процессов и тем самым, выражаясь современным языком, развитию капиталистических отношений в промышленности.

Поэтому химики XVIII в. вели борьбу с алхимией как с односторонней, нацеленной лишь на получение золота и потому неэкономичной химией. В то же время они выступали против голого эмпиризма и ремесленных тайн, которые, по их мнению, мешали создать рациональную химию, направленную на познание природы и применение полученных знаний на практике. Они стремились к использованию химических знаний в производстве и выступали против пренебрежительного отношения к практической (производственной) деятельности. Ремесленник, производящий изделия, и фабрикант, руководящий предприятием,- эти люди должны быть равноправными гражданами общества, не менее уважаемыми, чем привилегированное дворянство [8, с. 54 и cл.].

С середины XVIII в. химики стали публиковать труды в основном на национальных языках. Большая часть химических сообщений, книг и журналов предназначалась для практиков. Издавая учебники и книги с описанием различных экспериментов, химики способствовали развитию самообразования. Они постепенно освобождали язык от латинизмов, в результате чего изложение в книгах становилось более простым и конкретным. В XVIII в. быстро росло число публикаций химических работ, необходимых прежде всего ремесленникам, аптекарям, врачам, хозяевам предприятий, землевладельцам и т. п.

Но одновременно химики стремились пробудить и интерес к науке; они хотели, чтобы применение химических знаний в ремеслах не было самоцелью, и пытались убедить общество в полезности химических методов и представлений для совершенствования знаний о природе веществ. Называя этих ученых химиками, мы несколько осовремениваем реальную историческую картину. Дело в том, что в XVII в. термин "химия" употребляли еще сравнительно редко. Лишь после Шталя этот термин получил широкое распространение. Это было связано с тем, что химия в то время постепенно завоевывала популярность, тогда как алхимия теряла свои позиции. В XVIII в. химия наиболее тесно была связана с медициной, и фармацией. Некоторые ученые (Бекман, Гермбштедт) старались показать, какую пользу приносит химия для развития ремесел и сельского хозяйства, и доказать, что она могла бы принести еще большую пользу. Гермбштедт провел даже цикл занятий для владельцев ряда предприятий.

К концу XVIII в. число открытий в области химии настолько возросло, что уже ощущалась нехватка в научно-технических журналах. Это хорошо отражено в работах Виглеба [9] и Гмелина [10], в которых важнейшие исследования приведены в хронологическом порядке. Вдохновенно и подробно описывали химики приборы, установки и методы исследования, которые, как правило, были ими же и разработаны. Тем самым они "вводили" читателя в свою лабораторию, раскрывая перед ним психологию научного творчества.

Сделанные химиками в XVIII в. открытия и изобретения, а также разработанные теории привели к крупным успехам в прикладной, экспериментальной и теоретической химии. Химия стала одной из движущих сил промышленной революции. Например, изобретение метода пудлингования[6] и создание пламенной печи вывели металлургию из "тупика", в котором она могла оказаться из-за ограниченных ресурсов такого сырья, как древесина. Ведь древесина шла на отопление и была ниболее распространенным строительным материалом: дома, мосты, мельницы, повозки, суда были в основном деревянными. Из древесины добывали деготь, поташ и уголь. Древесный уголь не только использовался в качестве топлива, но служил восстановителем в различных химических процессах. Стремление найти замену этому сырью заметнее всего ощущалось в Англии, где, с одной стороны, площади, занятые лесами, были очень невелики, а с другой стороны, стала рано развиваться металлургия. Именно в Англии в 1735-1783 гг. произошла замена древесного угля на каменный в процессах получения чугуна и стали (методом пудлингования). Это позволило увеличить объем доменных печей и повысить их продуктивность. Но для работы более крупных доменных печей требовался больший приток воздуха, который не могли обеспечить ни водяные колеса, ни даже воздуходувки новой конструкции [11, с. 562 и cл.].

Проблема была решена Уаттом, создавшим паровую машину. Эта машина в течение последующих ста лет, вплоть до изобретения дизеля и электромотора, продолжала оставаться самым мощным двигателем. Работа паровой машины не зависела от природных условий и обеспечивала непрерывность подачи воздуха. В горном деле паровая машина позволила усовершенствовать воздушный и водяной режимы и тем самым увеличить добычу угля и руды. В производствах, связанных с обработкой металла, эта машина вытеснила водяное колесо. Благодаря применению паровой машины металлургия поднялась на качественно новую ступень развития.

В других отраслях промышленности тоже происходили подобные процессы. Так, например, текстильная и стекольная промышленности не могли развиваться без достаточной сырьевой базы — серной кислоты, соды и хлора. На увеличение добычи природной соды едва ли можно было рассчитывать. Положение существенно изменилось лишь после того, как в конце XVIII в. Леблан предложил способ получения соды из имеющегося в достаточном количестве сырья — природной поваренной соли, извести и угля [6]. Сода, полученная по методу Леблана, оказалась лучшего качества и к тому же более дешевой, чем природная. Производство такой соды начало удовлетворять растущие потребности текстильной промышленности, быстро развивающейся в результате создания прядильных и ткацких машин.

Благодаря исследованиям химиков в XVIII в. были созданы лучшие способы отбеливания, оказавшие громадное влияние на развитие текстильной и бумажной промышленности; возможности отбеливания с помощью кислого молока или при выгорании тканей на траве под солнцем, конечно, были очень ограниченными. Химики заменили кислое молоко серной кислотой, а огромные луговые пространства — камерами для отбеливания хлором. Отбеливающее действие хлора было открыто Шееле, а технологическое решение этого метода было разработано Бертолле [6].

В отличие от соды способы получения серной кислоты были известны. Рост производства серной кислоты требовал не создания новых методов, а совершенствования технологии — стеклянные сосуды были заменены в XVIII в. на вместительные свинцовые камеры [6]. Примерно в это же время европейским химикам удалось получить новый материал — фарфор, который, правда, уже с VII в. был известен в Китае [6]. С середины XIX в. фарфор, импортировавшийся ранее в Европу в виде дорогой посуды, стал общедоступным.

В XVIII — начале XIX вв. результаты работ химиков оказали большое влияние на развитие и других отраслей промышленности: дубильного, красильного и пивоваренного производств. Разработка способа получения сахара из свеклы в это время позволила развивать пищевую и кондитерскую промышленности независимо от импорта сырья (тростникового сахара). Это привело к значительному улучшению питания населения европейских стран [6, с. 125].

Экспериментальная практика

В экспериментальных химических исследованиях тоже началась новая эпоха, которая прежде всего ознаменовалась выделением химии в самостоятельный раздел науки. Начало искусства экспериментирования относится к эпохе Возрождения [6]. В то время создавались методы и приборы, с помощью которых ученые пытались проникнуть в суть явлений природы и исследовать свойства веществ, их состав, превращения и строение.

Начиная с XVII в. при различных университетах и академиях стали создаваться лаборатории; в Германии первая лаборатория появилась в 1609 г. в университете г. Марбурга. Однако в этих лабораториях, организованных чаще всего на медицинских факультетах (лишь иногда на горнодобывающих или стекольных предприятиях), занимались, как правило, решением чисто практических задач. В лабораториях, принадлежащих феодальным властителям, наряду с попытками получить золото химики занимались также и практическими работами — изготовлением стали, пороха, глазури, красок, стекла. Также обстояли дела в лабораториях аптекарей или ремесленников. В течение XVIII в. на основе этих "экспериментальных учреждений" постепенно возникли современные лаборатории: во Франции — при Академии наук, в Англии — при научных обществах, в Германии — при академиях и университетах.

Лаборатория придворной королевской аптеки (Кенигсберг, 1778 г.)

Некоторые ученые, например Пристли, Кавендиш, Троммсдорф или Виглеб, создавали лаборатории у себя дома; другие, например Шееле, экспериментировали в лабораториях при аптеках. Во Фрейберге при Горной академии возникла лаборатория, которой руководил И. Генкель (а позднее В. А. Лампадиус) и где среди других студентов обучался М. В. Ломоносов[7].

Открытие и описание состава и свойств веществ стало главной задачей экспериментаторов в XVIII — начале XIX вв. Хотя возможность практического использования полученных ими результатов не отрицалась (химики слишком тесно были связаны с промышленной буржуазией, чтобы не думать о ее выгодах), но на передний план выдвигались научные интересы. Либих подчеркивал это позднее (в XIX в.) столь решительно, что даже вопрос о практической применимости он считал враждебным науке [12, с. 30 и 180].

Лаборатория Джозефа Пристли (1775г.)

Точные представления о составе веществ и их реакциях, полученные путем систематических исследований, стали главным критерием в химии к концу XVIII в. Отныне в основу трактовки любых химических превращений были положены не остроумные умозрительные заключения, а результаты специально поставленных исследований. Вот почему в середине XIX в. Пастер назвал лаборатории, в которых такие исследования осуществлялись, храмами нового времени. Виглеб в 1777 г. охарактеризовал новую ситуацию следующим образом: "Теперь необходимо либо приводить более полные доказательства, либо сохранять полное молчание; доказательства, однако, должны представлять собой не какую-либо фантазию, а действительные факты" [107, с. 319].

В XVIII в. для экспериментальных работ начали разрабатываться специальные лабораторные приборы и методы исследования веществ. Важнейшими приборами считались различные печи и "зажигательные стекла", поскольку достижение определенных высоких температур было сложным делом. Коренной переворот в этой области был совершен лишь в середине XIX в. благодаря работам Бунзена (с изобретением горелки Бунзена). В лабораториях широко использовали паяльную трубку, а точное измерение температур проводили с помощью термометров. Использование новых материалов (например, пробки, каучука) облегчило сборку перегонных аппаратов; их работа была значительно усовершенствована после создания противоточного лабораторного холодильника. Микроскоп, зеркала с платиновой поверхностью и пневматические ванны — таково было основное лабораторное оборудование в XVIII в. В конце XVIII в. к ним добавилось электричество. С помощью электричества Г. Кавендишу в 1784 г. удалось разложить воду на водород и кислород. Исследования Л. Гальвани и А. Вольта привели в 1795 г. к открытию электрохимического ряда напряжений металлов. В 1798 г. Риттер[8] нашел, что ряд напряжений металлов Вольта совпадает с последовательностью их сродства к кислороду, а также с последовательностью, в которой один металл вытесняет другой из его солей. Тем самым Риттер, по мнению Оствальда, заложил основы электрохимии, развитие которой очень скоро значительно обогатило химическую науку. Риттер предполагал, что электричество и химия должны соединиться в единое целое.

К концу XVIII в. высокого уровня достигли и методы анализа "мокрым путем". В то время уже существовали различные приборы, необходимые для проведения таких операций, как выпаривание, фильтрование, осаждение. Использование разнообразных реагентов широко вошло в повседневную практику лабораторий. Химики стали применять и количественные методы исследования. Так, К. Ф. Венцель и И. В. Рихтер использовали их при изучении реакций нейтрализации кислот и оснований.

Необходимым оборудованием лабораторий стали весы. Их чувствительность позволяла проводить измерения с точностью до 1 мг. В это время весы уже повсюду были признаны как контрольный прибор для количественного доказательства химического превращения.

Ко всем этим (сравнительно небольшим) достижениям экспериментальной химии следует добавить открытие за период с 1751 по 1798 г. семнадцати химических элементов (см. приложение в конце книги) — больше, чем за все предыдущее время[9].

Новая химия и историография

Наступление нового периода в развитии химии оказалось наиболее заметным в области теории. В это время произошел окончательный отказ химиков от признания четырех первоэлементов Эмпедокла и Аристотеля — огня, воды, воздуха и земли, а заодно и от "химии", построенной на этой основе арабскими учеными и Парацельсом. В конце XVIII в. элементом стали называть любое вещество, которое в результате химических операций было не способно к дальнейшему разложению[10]. Примерно тогда же была разработана соответствующая номенклатура составных частей соединений,- химики заговорили на новом языке [6].

В разных европейских странах этот переворот произошел с небольшими различиями во времени, но в один и тот же исторический период. Межгосударственные границы не препятствовали научному общению химиков. Этому не мешало даже то, что уже с середины XVIII в. латинский язык научных статей постепенно стал уступать место национальным языкам. Перевод статей и их публикация в журналах осуществлялись очень быстро [8]. Войны, правда, наносили ущерб межнациональным научным контактам, но не прерывали их полностью, как это произошло позднее — в период первой мировой войны. Случались, конечно, дискуссии и даже споры из-за приоритета. Число химиков было еще невелико, многие знали друг друга лично, некоторые из них время от времени работали вместе над какой-нибудь проблемой. После завершения обучения многие молодые ученые пытались продолжить свое образование в лаборатории у какого-либо известного химика в своей стране или за границей.

В XVII-XVIII вв. уже существовало деление химиков на две группы — на специалистов в области "чистой", или теоретической, химии и в области "прикладной", или практической, химии. Первые проводили научные исследования и преподавали в учебных заведениях. Вторые создавали или совершенствовали способы получения важных для практики веществ (среди которых значительное место занимали лекарства). Особняком стояли попытки создания химической технологии на основе результатов физических и химических исследований [8].

Формированию химических знаний, которые вызвали к жизни химическую историографию, способствовал ряд обстоятельств. Во-первых, чувство исторического самосознания у буржуазии, которая постепенно начала брать в руки экономическую и политическую власть. Во-вторых, после работ Лавуазье химия стала формироваться в научную дисциплину, история которой представляла значительный интерес для понимания путей развития этой новой области естествознания. В дальнейшем эта история стала предметом специальной дисциплины — истории химии.

Первые попытки историко-химического анализа были предприняты еще в XVI в. Р. Валленсисом и в XVII в. Г. Конрингом, А. Кирхнером, О. Борхом и И. Кункелем. Шталь тоже занимался вопросами истории химии, критически относясь к воззрениям своих предшественников.

Книга И. Виглеба "Историко-критическое исследование алхимии..." (1777 г.) завершила начальный период разработки историографии химии и в то же время положила начало подлинно научной историографии химии. В 1790-1791 гг. Виглеб первым опубликовал данные о развитии химии и "открытиях нового периода" в хронологическом порядке с 1651 до 1790 г. Тем самым эта книга явилась продолжением созданной Бергманом и переведенной с латинского Виглебом книги по истории химии в древнем мире и в средневековье [8, с. 5, 16 и сл.][11].

От системы Лавуазье к атомистике Дальтона

Бог устроил все по мере, числу и весу.

И. Рихтер [13]
В 80-х гг. XVIII в. новая система Лавуазье получила признание у ведущих естествоиспытателей Франции — К. Бертолле, А. де Фуркруа и Л. Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике "Начальный курс химии, представленный в новом виде на основе новейших открытий".

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а двойные соединения неметаллов с кислородом — к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями.

Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии — вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии. Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянном сосуде. В итоге он обнаружил в воде незначительное количество "земли", установив при этом, что изменения общего веса сосуда вместе с водой не происходит. Образование "земель" Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда.

Для ответа на этот вопрос шведский химик аптекарь К. Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся "земель" и материала сосуда.

Таблица элементов Лавуазье. Из книги Лавуазье 'Начальный курс химии' (1789 г.)

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции[12]. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи.

Другие химики, например М. В. Ломоносов или Дж. Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, "известей") как процесс, при котором частицы воздуха соединяются с каким-либо веществом. Этот воздух может быть "оттянут обратно" путем восстановления. В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется при его восстановлении, как, например, при образовании "извести" ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется.

Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода. В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона [6]. (Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез.)

Антуан Лоран Лавуазье (1743-1794) с женой

Антуан Лоран Лавуазье родился в 1743 г. в семье зажиточного адвоката. В юности изучал математику, физику и химию (последнюю у Г. Ф. Руэля — способного химика, энтузиаста науки). Уже в двадцатилетнем возрасте Лавуазье написал свою первую статью о лучшем способе освещения улиц Парижа, за что получил золотую медаль Академии наук. Лавуазье участвовал в геологической экспедиции, а в 25 лет стал адъюнктом химии Парижской академии. Будучи весьма состоятельным человеком, он смог оплатить вступление в "Генеральный откуп"[13]. Дочь другого генерального откупщика Мари Польз стала его женой и сотрудницей. Их дом долгое время был местом встречи выдающихся людей того времени. Материальное положение позволило Лавуазье приобрести для своей лаборатории превосходное оборудование. Как член "Генерального откупа" и разнообразных комиссий Парижской академии наук он вынужден был заниматься такими проблемами, как контроль за качеством продуктов или снабжение водой морских судов и т. п. В 1776 г. ему было поручено руководство Управлением порохов и селитр, и он во многом способствовал тому, что производство пороха во Франции резко возросло, а качество пороха значительно улучшилось. Лавуазье немало сделал для популяризации химических знаний. Будучи хорошим экспериментатором, он устраивал в своей лаборатории демонстрации опытов, на которые приглашал даже не только специалистов-химиков, пробуждая таким образом у широкого круга людей интерес к науке.

После Великой Французской буржуазной революции (1789 г.) Лавуазье был избран членом Совета Парижа и Комиссии по управлению королевским имуществом. Одновременно он принимал активное участие в деятельности Комиссии по разработке метрической системы мер. Но в ноябре 1793 г. вместе с другими генеральными откупщиками он был арестован и 8 мая 1794 г. казнен. В формулировке обвинений, которые привели Лавуазье на гильотину, чувствуется предвзятость и демагогичность; его обвиняли в шантаже французского народа, в том, что он якобы подмачивал табак и добавлял в него вредные для здоровья вещества. Казнь Лавуазье была воспринята некоторыми учеными как результат террора якобинской диктатуры в ответ на травлю Марата. Другие считали ее трагической ошибкой или наказанием за участие Лавуазье в "Генеральном откупе" (14, с. 83, 138, 380)[14].

Лавуазье прожил чрезвычайно творческую жизнь, и вклад его в науку очень велик. Он был казнен в 50 лет. В 1862 г. в Париже было издано собрание его работ в шести томах. Наиболее полная его биография — "Лавуазье (1743-1794)" — была написана в 1888 г. Э. Гримо. В 1890 г. М. Бертло издал книгу "Революция в химии — Лавуазье"; Г. Кальбаум и А.Гофман в 1897 г. опубликовали работу "Распространение теории Лавуазье в Германии", а в 1910 г. появилась книга М. Шпетера "Лавуазье и его предшественники". В 1900 г. в Париже был воздвигнут бронзовый памятник Лавуазье.

Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах д-ра Гиртаннера (из Геттингена): "Новая химическая номенклатура на немецком языке" (1791 г.) и "Основы антифлогистонной химии" (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М. Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый немецкий естествоиспытатель А. Гумбольдт. В 1790-х годах в Германии не раз публиковались работы Лавуазье [139, с. 92- 94].

Большинство химиков Англии, Голландии, Швеции, Италии (среди них: Кирван и Хиггинс — в Англии; Троствейк, Дейман, ван Марум — в Голландии; Жиобер, Бруньятелли и др.- в Италии, Гадолин — в Швеции) разделяли взгляды Лавуазье [15, с. 156]. Нередко в историко-научной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 10-15-летний период дискуссий в химии не так уж велик.

До начала XIX в. крупнейшими химиками и физиками Франции были коллеги Лавуазье — К. Бертолле, А. де Фуркруа, Гитон де Морво, Л. Воклен. В значительной степени благодаря их стараниям была создана Политехническая школа, в которой особое внимание уделялось техническим и естественнонаучным дисциплинам и откуда вышли многие выдающиеся естествоиспытатели и инженеры[15]. Опыт работы Политехнической школы оказал большое влияние на развитие науки во многих странах. Оно особенно усилилось после проведенной Фуркруа в конце XVIII — начале XIX вв. реорганизации всей государственной системы преподавания, что способствовало повышению уровня образования и усилению внимания к естествознанию во всех развитых странах.

Стехиометрия — Рихтер, Фишер, Бертолле, Пруст

В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы [6], а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству. Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью и в такой последовательности: быстрее всего с золотом, затем с серебром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только "ненависть" и "любовь" веществ друг к другу[16]. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, а чистота веществ в значительной мере определяет их сродство друг к другу. Г. Шталь объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их "сродства", и многие химики составляли соответствующие таблицы. Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII — начале XIX вв. ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с которой, например, соли состоят из положительно и отрицательно заряженных "оснований" и "кислот"[17]: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т. Бергман и Р. Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли — сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода. В 1767 г. Кавендиш обнаружил, что количества азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И. Рихтер первым сформулировал закон эквивалентов (см. ниже)[18], объяснение которому было найдено позднее с позиций атомистической теории Дальтона.

Иеремия Вениамин Рихтер (1762-1807)

Иеремия Вениамин Рихтер (1762-1807) — немецкий химик — родился в Гиршберге (Силезия; ныне г. Зелёна-Гура). Изучал математику, естественные науки и философию в Кенигсберге, где работал Иммануил Кант (1724-1804). В книге "Метафизические основы естествознания" (1786) Кант утверждал, что любое учение о природе содержит ровно столько собственно естествознания, сколько в нем математики. В 1789 г. Рихтер написал диссертацию, посвященную использованию математики в химии. Работа в Бреслау в администрации горнодобывающей промышленности, а позднее в лаборатории красок на королевской фарфоровой фабрике в Берлине привела Рихтера к отчетливому пониманию важного значения весовых соотношений для химии. Так же как пифагорейцы и Кеплер, а позднее Менделеев, Рихтер считал, что все в мире устроено "по мере, числу и весу". В работе "Стехиометрия или искусство измерения химических элементов" (1792-1793 гг.) он сформулировал закон нейтрализации, который более известен под названием "закон эквивалентов".

Рихтер установил, что раствор, получающийся при смешении растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какой-либо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален: K24 + Ba(NО3)2 = 2KNO3 + BaSО4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2К, 1Ва, 1SО4 и 2NО3. Полинг обобщил и сформулировал в современном виде этот "закон соединительных весов" (эквивалентов или эквивалентных пропорций): "Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах" [1].

Вначале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э. Фишер, который среди эквивалентных весов Рихтера выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу "относительных весов" (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно только благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге "Опыт химической статики" (1803 г.). Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования.

Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс[19], который аналитически выражал влияние количеств взаимодействующих веществ на скорость превращения. Немецкий химик К. Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна "силе" кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс — с другой, существует качественное различие.

Как крупный ученый и один из основоположников новой системы химии Бертолле пользовался большим авторитетом. Он преподавал в широко известной Политехнической школе; как признанный химик сопровождал Наполеона в его походах в Италию и Египет. Большое значение для практики имела разработка Бертолле способов отбеливания тканей и бумаги хлором.

Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Жозеф Луи Пруст (1754-1826)

Как и Лавуазье, Пруст был учеником Руэля. Сначала он управлял аптекой в Париже, а затем с 1791 г. был профессором Университета в Мадриде.

Проделав в течение 1799-1807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ[20].

Атомистическая теория Дальтона

Закон постоянства состава веществ был подтвержден Дальтоном, правда, на основе совершенно других исследований и рассуждений. В то же время благодаря оригинальному подходу к изучению состава веществ Дальтон открыл и закон простых кратных отношений[21]. Но главным образом Дальтон известен в истории науки созданием "химической атомистики"- теории атомного строения веществ, которое определяет их химические свойства.

Джон Дальтон (1766-1844)

Джон Дальтон (1766-1844)[22] был сыном ткача, образование получил у инструментального мастера Элиа Робинсона. С 13 лет Дальтон занимался самообразованием, изучая механику, математику, астрономию и географию и даже сам проводил занятия по этим предметам в школе. Благодаря содействию известных английских ученых Дальтон в 1794 г. стал преподавателем математики и естествознания в Новом колледже в Манчестере, в котором ранее преподавал и Дж. Пристли. В 1800 г. Новый колледж был переведен в Йорк; однако Дальтон остался в Манчестере, где он активно участвовал в работе городского Литературно-философского общества, основанного в 1781 г. и объединявшего людей, интересовавшихся наукой. На собраниях Общества читались лекции, проходили дискуссии по вопросам литературы, натурфилософии, политики, торговли и искусства. С 1785 г. Общество начало публиковать наиболее важные из этих работ. В 1794 г. Дальтон прочитал в Обществе свой первый доклад о цветовой слепоте — заболевании, которым он сам страдал и которое потом получило название "дальтонизм". С 1787 г. он занимался метеорологическими наблюдениями и записывал их в своем дневнике "наблюдений за погодой". В течение 57 лет до самой смерти Дальтон ежедневно делал такие записи. В работе "Метеорологические наблюдения и опыты", опубликованной в 1793 г., он подробно описал метеорологические приборы: разнообразные термометры, барометры, устройства для определения температуры замерзания жидкостей. Интерес к метеорологии привел Дальтона в дальнейшем к изучению газов и в конце концов к созданию атомистической теории.

Еще в XVI и XVII вв. атомистические представления играли важную роль при объяснении химических явлений [6]. В Англии эти идеи получили распространение в результате работ Р. Бойля и И. Ньютона. Атомы, или корпускулы[23], рассматривались как отдельные плотные и непроницаемые частицы очень малых размеров. Эти представления сохранили свое значение и в XVIII в., однако на их основе химикам уже трудно стало объяснять новые факты. Согласно этим представлениям, разделение и соединение атомов осуществлялось чисто механически за счет их различных форм — с помощью крючочков и колечек, пор и зубцов, входящих в зацепление или разъединяющихся.

В 1789 г. У. Хиггинс[24] выступил против флогистонной теории с позиций атомизма, но его аргументы были лишь умозрительными. В отличие от него Дальтон для подтверждения положений созданной им теории не только использовал новейшие результаты других химиков (систему Лавуазье, закон эквивалентов Рихтера, закон постоянства состава Пруста), но и провел самостоятельные исследования.

В конце XVIII в. Дальтон начал заниматься изучением атмосферы, состояния газов при изменении температуры и давления, поглощения газов жидкостями. Основываясь на том, что удельный вес кислорода больше удельного веса азота, Дальтон пытался доказать, что в равнинном воздухе кислорода содержится больше, чем в горном. Но проведенные ранее исследования Пристли показали, что независимо от высоты воздух содержит 21 "часть" (объёмных процентов) кислорода и 79 "частей" (объёмных процентов) азота. Каким же образом могло осуществляться постоянное распределение в такой смеси газов с различными удельными весами? Некоторые химики пытались объяснить это тем, что воздух, быть может, является каким-то видом химического соединения. Дальтон однако таким объяснением не довольствовался, а изучил свойства различных по удельному весу газов. Он обнаружил, что газы при соприкосновении смешиваются друг с другом, даже если более тяжелый газ находится ниже более легкого. Таким образом, любой газ ведет себя в пространстве так, как будто в системе находится только он один. Каждый газ оказывает свое собственное (парциальное) давление, и общее давление газовой смеси является суммой парциальных давлений всех газов.

В 1802 г. Дальтон и одновременно Гей-Люссак обнаружили, что все газы одинаково расширяются при нагревании. В 1803 г. друг Дальтона У. Генри обратил его внимание на то, что растворимость газов в индифферентных жидкостях пропорциональна их давлению. Изучая растворимость газов в жидкостях, Дальтон обнаружил, что каждый газ растворяется так, как будто в системе нет других газов.

21 октября 1803 г. перед семью членами Манчестерского литературно-философского общества Дальтон сделал сообщение об опытах по поглощению газов и объяснил поведение газов с позиций атомизма. Он утверждал, что частички (атомы) имеют шарообразную форму и окружены тепловой атмосферой. Они неизменяемы; химические реакции протекают как процесс разделения или соединения нескольких атомов. Химическими методами нельзя вызвать разрушение или воссоздание атома. Различие между элементами Дальтон объяснял различием их атомов, поскольку каждый элемент состоит из определенного вида атомов с определенным весом. Каждое соединение состоит из определенного количества атомов и может образоваться только при строгом их соотношении (1:1, 1:2, 2:3 и т. д.). Атомы одного вида равны между собой; вес соединения равен сумме весов входящих в него атомов[25]. Эта гениальная гипотеза выдвинула Дальтона в первые ряды ученых, заложивших основы химической теории. Дальтон стремился установить относительные веса наименьших частиц простых и сложных тел. Отправной точкой для него служили весовые соотношения, в которых элементы входят в состав соединений. Поскольку не было никаких способов определения числа атомов, образующих соединение, он считал, что при образовании соединения атомы входят в него в простейших соотношениях. Так, если для двух элементов было известно только одно соединение, то Дальтон предполагал, что соотношение атомов в нем равно 1:1. Если существовали два различных соединения, то, по мнению Дальтона, можно было предположить, что соотношения атомов в них равны 1:1 или 1:2. И так далее. Наконец, для расчета относительных атомных весов элементов Дальтон использовал в качестве эталона водород, приняв его вес за единицу. В XX в. термин "атомный вес" был заменен термином "атомная масса".

Во времена Дальтона было известно только одно соединение водорода с кислородом. Поэтому Дальтон решил, что вода состоит из одного атома водорода и одного атома кислорода. Для углерода и кислорода были известны два соединения. Считалось, что одно из них состоит из одного атома кислорода и одного атома углерода, а в другом на один атом углерода приходятся два атома кислорода.

Если, например, по данным анализа в 100 частях воды содержится 11,11 части водорода и 88,89 части кислорода, то атомный вес кислорода определяется из следующего соотношения: 11,11:88,89 = 1:х (х = 8). Этот метод был положен в основу определения соединительных, или эквивалентных, весов, однако по сравнению с известными в настоящее время значениями они оказались не очень точными. Дальтон сам уточнял некоторые аналитические данные; например, для кислорода в 1803 г. он нашел значение относительного атомного веса равным 5,66, а в 1810 г.- равным 7.

Рассчитанные таким образом значения атомных весов использовались и в дальнейшем (но в настоящее время они интересны только тем, что помогают понять метод Дальтона). Намного более точными оказались относительные атомные веса многих элементов, определенные Берцелиусом[26].

В основу сообщения Дальтона от 21 октября 1803 г. легли определенные им относительные "атомные веса" шести элементов и тринадцати соединений. Они были недостаточно точны (впоследствии некоторые из них были исправлены им самим и Берцелиусом), но это оказалось не столь уж важным: решающее значение имел сам метод.

В начале XIX в.- во время спора между Бертолле и Прустом — Дальтон не только подтвердил закон постоянства состава соединений, но и открыл закон простых кратных отношений. Этот закон Дальтон вывел на основе данных о составе двойных соединений и атомистической гипотезы, согласно которой предполагались целочисленные соотношения атомов в соединениях. В 1805 г. Дальтон опубликовал основные положения атомистики и первую таблицу атомных весов в "Мемуарах" Литературно-философского общества Манчестера.

В 1807 г. английский химик Т. Томсон, знакомый с Дальтоном, в книге "Новая химическая система" впервые изложил взгляды Дальтона для широкого круга читателей, а через год Дальтон опубликовал первую часть своей основополагающей работы "Новая система химической философии". В 1812 г. она была переведена на немецкий язык, а позднее — еще раз опубликована в третьем томе издаваемой Оствальдом серии "Классики точных наук".

Химические символы конца XVIII в. А — по К. Ф. Кильмейеру (цит. в [25]), Б — по П. О. Аде и Ж. А. Ассенфрацу

Для того чтобы атомистическая теория стала более наглядной, Дальтон предложил систему знаков для обозначения элементов и их соединений. Они отличались от алхимических обозначений и от символов, предложенных французскими химиками П. О. Аде и Ж. А. Ассенфрацем в конце XVIII в., не только по форме. Для обозначения элементов Аде и Ассенфрац использовали алхимические символы, штрихи и кружки, полуокружности, треугольники и квадраты, но все эти обозначения имели только качественный характер. Дальтон придал своим символам одновременно и количественное значение: они обозначали не только определенный элемент, но и атом с определенным весом. Атомы элементов он представлял с помощью шарообразных символов, которые, поставленные рядом, позволяли представить строение химических соединений. Для кислорода он использовал обозначение в виде кружка, для водорода — кружок с точкой, для серы — кружок с крестом. В соответствии с этим вода обозначалась с помощью кружка и кружка с точкой. Знаки Дальтона вскоре были заменены Берцелиусом новыми обозначениями, на которых основан современный химический язык.

Химические символы Дж. Дальтона

Однако атомистическая теория Дальтона нашла признание далеко не у всех химиков. Особенно это оказалось сложным потому, что атомные веса, предложенные Дальтоном, на самом деле были эквивалентными весами. Поэтому при их использовании возникали трудности, которые впервые удалось преодолеть лишь спустя 50 лет.

Тем не менее идеи и основные положения теории Дальтона получили широчайшее признание у химиков. К сожалению, сам Дальтон был настолько убежден в правильности разработанных им атомистических представлений, что решительно отклонял какие-либо идеи, дополняющие и развивающие атомистическую гипотезу. ...



Все права на текст принадлежат автору: Вильгельм Штрубе.
Это короткий фрагмент для ознакомления с книгой.
Пути развития химии. Том 2. От начала промышленной революции до первой четверти XX векаВильгельм Штрубе